incompatible elements
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 37)

H-INDEX

27
(FIVE YEARS 2)

Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 105
Author(s):  
Vasily Shcherbakov ◽  
Ilya Bindeman ◽  
Viktor Gazeev

Significant volumes of rhyolites and granites of the Pliocene-Pleistocene age are exposed in the collision zone of the Greater Caucasus, Russia. The volcanic history of the region includes ignimbrites and lavas associated with the Chegem caldera (2.9 Ma) and Elbrus volcano (1.98 and 0.7 Ma) and rhyolitic necks and granites in Tyrnyauz (1.98 Ma). They are characterized by a similar bulk and mineral composition and close ratios of incompatible elements, which indicates their related origin. The 1.98 Ma Elbrus ignimbrites, compared to the 2.9 Ma Chegem ignimbrites, have elevated concentrations of both compatible (Cr, Sr, Ca, Ni) and incompatible elements (Cs, Rb, U). We argue that the Elbrus ignimbrites were produced from magma geochemically similar to Chegem rhyolites through fractionation crystallization coupled with the assimilation of crustal material. The 1.98 Ma Eldjuta granites of Tyrnyauz and early ignimbrites of the Elbrus region (1.98 Ma) are temporally coeval, similar mineralogically, and have comparable major and trace element composition, which indicates that the Elbrus ignimbrites probably erupted from the area of modern Tyrnyauz; the Eldjurta granite could represent a plutonic reservoir that fed this eruption. Late ignimbrites of Elbrus (0.7 Ma) and subsequent lavas demonstrate progressively more mafic mineral assemblage and bulk rock composition in comparison with rhyolites. This indicates their origin in response to the mixing of rhyolites with magmas of a more basic composition at the late stage of magma system development. The composition of these basic magmas may be close to the basaltic trachyandesite, the flows exposed along the periphery of the Elbrus volcano. All studied young volcanic rocks of the Greater Caucasus are characterized by depletion in HSFE and enrichment in LILE, Li, and Pb, which emphasizes the close relationship of young silicic magmatism with magmas of suprasubduction geochemical affinity. An important geochemical feature is the enrichment of U up to 8 ppm and Th up to 35 ppm. The trace element composition of the rocks indicates that the original rhyolitic magma of Chegem ignimbrites caldera was formed at >80%–90% fractionation of calc-alkaline arc basalts with increased alkalinity. This observation, in addition to published data for isotopic composition (O-Hf-Sr) of the same units, shows that the crustal isotopic signatures of silicic volcanics may arise due to the subduction-induced fertilization of peridotites producing parental basaltic magmas before a delamination episode reactivated the melting of the former mantle and the lower crust.


2022 ◽  
Author(s):  
Penny Wieser ◽  
Marie Edmonds ◽  
Cheryl Gansecki ◽  
John Maclennan ◽  
Frances Jenner ◽  
...  

Magmas with matrix glass compositions ranging from basalt to dacite erupted from a series of 24 fissures in the first two weeks of the 2018 Lower East Rift Zone (LERZ) eruption of Kīlauea Volcano. Eruption styles ranged from low spattering and fountaining to strombolian activity. Major element trajectories in matrix glasses and melt inclusions hosted by olivine, pyroxene and plagioclase are consistent with variable amounts of fractional crystallization, with incompatible elements (e.g., Cl, F, H2O) becoming enriched by 4-5 times as melt MgO contents evolve from 6 to 0.5 wt%. The high viscosity and high H2O contents (~2 wt%) of the dacitic melts erupting at Fissure 17 account for the explosive Strombolian behavior exhibited by this fissure, in contrast to the low fountaining and spattering observed at fissures erupting basaltic to basaltic-andesite melts. Saturation pressures calculated from melt inclusions CO2-H2O contents indicate that the magma reservoir(s) supplying these fissures was located at ~2-3 km depth, which is in agreement with the depth of a dacitic magma body intercepted during drilling in 2005 (~2.5 km) and a seismically-imaged low Vp/Vs anomaly (~2 km depth). Nb/Y ratios in erupted products are similar to lavas erupted between 1955-1960, indicating that melts were stored and underwent variable amounts of crystallization in the LERZ for >60 years before being remobilized by a dike intrusion in 2018. We demonstrate that extensive fractional crystallization generates viscous and volatile-rich magma with potential for hazardous explosive eruptions, which may be lurking undetected at many ocean island volcanoes.


Geosciences ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 12
Author(s):  
Noël-Aimée Kouamo Keutchafo ◽  
Nicole Armelle Wambo Simeni ◽  
Brillant Kandzi Nforba ◽  
Agathe Arrissa Noucoucouk ◽  
Josiane Demlabin Sonmo ◽  
...  

In the western Cameroon, crop out several dyke swarms of Paleozoic–Mesozoic age. These dykes intrude the Precambrian basement in the southern continental part of the Cretaceous Cameroon Volcanic Line. In the Njimom area, two groups of mafic dykes that crosscut the Neoproterozoic basement rocks have been observed. A first group intrudes the mylonites whereas the second group intrudes the granites. The dykes are alkaline basalts and hawaiites. The mineralogical assemblage of both groups of dykes consists of plagioclase, clinopyroxene, altered olivine, and opaque oxides. The dykes that cross-cut the Precambrian mylonitic gneisses show moderate TiO2 (1.7–2.0 wt.%), low MgO (4.4–7.1 wt.%), and compatible trace element concentrations (e.g., Cr = 70–180 ppm; Ni = 30–110 ppm). The dykes that intrude the granites have TiO2 contents between 2.3 and 2.5 wt.% and moderate compatible trace element concentrations (e.g., Cr = 260–280 ppm; Ni = 170–230 ppm). MgO varies from 5.9 to 9.2 wt.%. All mafic dykes are enriched in light lanthanide element and show moderate Zr/Nb and high Zr/Y, Nb/Yb, and Ti/V ratios similar to those of average ocean island basalt (OIB)-type magmas. Some dykes that intrude the mylonites show evidence of contamination by continental crust. The composition of the clinopyroxenes of the dykes that intrude the mylonites clearly indicate different and unrelated parental magmas from dykes that intrude the granites. Contents and fractionation of the least and the most incompatible elements suggest low degrees of partial melting (3–5%) of heterogeneous source slightly enriched in incompatible elements in the spinel stability field. The geochemical features of Njimom dykes (in particular the dykes that intrude the granites) are similar to those of Paleozoic and Mesozoic dykes recorded in the southern continental part of the Cameroon Volcanic Line, suggesting multiple reactivations of pre-existing fractures that resulted in the fragmentation of western Gondwana and the opening of the South Atlantic Ocean.


2021 ◽  
pp. 315-316
Author(s):  
Martin Wight

Professor Carr relies on an antithesis: ‘Every political situation contains mutually incompatible elements of Utopia and reality, of morality and power.’ Carr provides ‘the most comprehensive modern restatement, other than Marxist or Fascist, of the Hobbesian view of politics. It is from politics that both morality and law derive their authority. For Hobbes, the kingdom of the fairies was the Roman Catholic Church, seducing mankind with its enchantments. For Professor Carr, it is the League of Nations, which is no other than the ghost of the deceased Pax Britannica.’ Carr’s tome is ‘the one lasting intellectual monument of the policy of appeasement’. The first edition, published in 1939, praised Chamberlain’s policy as ‘a reaction of realism against Utopianism’, and defended the 1938 Munich agreement whereby Britain, France, Germany, and Italy agreed to the cession to Berlin of the Sudetenland in Czechoslovakia. In the 1946 second edition ‘these passages are omitted’, Wight notes. ‘Wielding the realist critique at the expense of the moral critique, it is natural that Professor Carr should have moved since 1939 from support of collaboration with Germany to support of collaboration with Russia. But the Teheran–Yalta theory of world relationships is itself being swept from present realism into past Utopianism.’ In Wight’s view, ‘The student could have no better introduction to the fundamental problems of politics, provided always that he reads it side by side with Mr. Leonard Woolf’s deadly reply in “The War for Peace”.’


2021 ◽  
Author(s):  
◽  
Jessica Anne Dallas

<p>Meteorites provide the only direct record of the chronology and nature of the processes that occurred in the early solar system. In this study, meteorites were examined in order to gain insight into the timing and nature of magmatism and silicate differentiation on asteroidal bodies in the first few million years of the solar system. These bodies are considered the precursors to terrestrial planets, and as such they provide information about conditions in the solar system at the time of planet formation. This study focuses on eucrites, which are basaltic meteorites that are believed to represent the crust of the Howardite-Eucrite-Diogenite (HED) parent body. The processes of silicate differentiation and the relationship between eucrites and the diogenitic mafic cumulate of the HED parent body are poorly understood. The major and trace element chemistry of the minerals in the eucrite suite was measured. There is little variability in mineral major element concentrations in eucrites, however considerable variability was observed in mineral trace element concentrations, particularly with respect to incompatible elements in the mineral phases. Magnesium was separated from digested eucrite samples, and the Mg isotope composition of the eucrites was measured to high precision in order to date the samples using the short-lived ²⁶Al–²⁶Mg chronometer and examine magmatic evolution on the HED parent body. Correlations between incompatible elements in pyroxene and ²⁶Mg anomalies, produced by the decay of ²⁶Al, indicate that the eucrite suite was formed from a single, evolving magma body. Large trace element and Mg isotopic differences between eucrites and diogenites indicate that the two meteorite groups did not, as previously suggested, originate from the same magma body. Instead they may have formed from two large magma bodies, which were spatially or temporally separated on the HED parent body. The application of the short-lived ²⁶Al–²⁶Mg chronometer to this suite of eucrites constrains the onset of eucrite formation to ~3 Myr after the formation of the solar system’s first solids, as a result of rapid accretion and melting of planetesimals due to heating from the decay of ²⁶Al.</p>


2021 ◽  
Author(s):  
◽  
Jessica Anne Dallas

<p>Meteorites provide the only direct record of the chronology and nature of the processes that occurred in the early solar system. In this study, meteorites were examined in order to gain insight into the timing and nature of magmatism and silicate differentiation on asteroidal bodies in the first few million years of the solar system. These bodies are considered the precursors to terrestrial planets, and as such they provide information about conditions in the solar system at the time of planet formation. This study focuses on eucrites, which are basaltic meteorites that are believed to represent the crust of the Howardite-Eucrite-Diogenite (HED) parent body. The processes of silicate differentiation and the relationship between eucrites and the diogenitic mafic cumulate of the HED parent body are poorly understood. The major and trace element chemistry of the minerals in the eucrite suite was measured. There is little variability in mineral major element concentrations in eucrites, however considerable variability was observed in mineral trace element concentrations, particularly with respect to incompatible elements in the mineral phases. Magnesium was separated from digested eucrite samples, and the Mg isotope composition of the eucrites was measured to high precision in order to date the samples using the short-lived ²⁶Al–²⁶Mg chronometer and examine magmatic evolution on the HED parent body. Correlations between incompatible elements in pyroxene and ²⁶Mg anomalies, produced by the decay of ²⁶Al, indicate that the eucrite suite was formed from a single, evolving magma body. Large trace element and Mg isotopic differences between eucrites and diogenites indicate that the two meteorite groups did not, as previously suggested, originate from the same magma body. Instead they may have formed from two large magma bodies, which were spatially or temporally separated on the HED parent body. The application of the short-lived ²⁶Al–²⁶Mg chronometer to this suite of eucrites constrains the onset of eucrite formation to ~3 Myr after the formation of the solar system’s first solids, as a result of rapid accretion and melting of planetesimals due to heating from the decay of ²⁶Al.</p>


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1363
Author(s):  
Beiqi Zheng ◽  
Meihua Chen

Few studies have focused on gem-quality tourmaline acting as a petrogenetic recorder, and the colour genesis of pink elbaite is still controversial. We carry out in situ major, trace element and boron isotope composition analyses on a single tourmaline crystal. This crystal is characterized by sudden transformation from colourless to pink, which can represent full pegmatite magma evolution. According to the analysis results, all spots are divided into alkali groups according to X-site occupancy and subdivided into elbaite series. The pink part accommodates higher concentrations of volatile and incompatible elements. The result is most consistent with successive pegmatite evolution in which the colourless part crystallized from the early stage, while the pink part crystallized from the late stage. The relatively consistent δ11B value between the colourless and the pink part suggests no fluid exsolution occurred during pegmatite evolution. The slight increase of δ11B values within the pink part and the colourless part may be due to mica crystallization. The combination of (Li++Mn2+) (Al3++Xvac)-1 and the exclusive positive linear relationship of Mn2+ vs. Ti4+ indicate that Mn2+ is the main cause of pink, while Mn2+-Ti4+ intervalence charge transfer also plays an important role.


2021 ◽  
Vol 59 (6) ◽  
pp. 1397-1435
Author(s):  
Thomas Oberthür ◽  
Frank Melcher ◽  
Simon Goldmann ◽  
Fabian Fröhlich

ABSTRACT The platiniferous dunite pipes are discordant orebodies in the Bushveld Complex. The Onverwacht pipe is a large body (&gt;300 m in diameter) of magnesian dunite (Fo80–83) that crosscuts a sequence of cumulates in the Lower Critical Zone of the Bushveld Complex. In a pipe-in-pipe configuration, the main dunite pipe at Onverwacht hosts a carrot-shaped inner pipe of Fe-rich dunite pegmatite (Fo46–62) which comprises the platinum-bearing orebody. The latter was ca. 18 m in diameter and a mining depth of about 320 m was reached. In the present work, a variety of ore samples were studied by whole-rock geochemistry, including analyses of platinum group elements, ore microscopy, and electron probe microanalysis. Olivine of the ore zone displays considerable chemical variation (range 46–62 mol.% Fo) and may represent either a continuum, or different batches of magma, or vertical or horizontal zonation within the ore zone. Chromite is principally regarded to be a consanguineous component of the pipe magma that crystallized in situ and simultaneously with olivine. The Onverwacht mineralization is Pt-dominated (&gt;95% of the platinum group elements) and the ore is virtually devoid of sulfides. Platinum-dominated platinum group minerals predominate, followed by Rh-, Pd-, and Ru-species. Pt-Fe alloys are most frequent, followed by Pt-Rh-Ru-arsenides and -sulfarsenides, platinum group element antimonides, and platinum group element sulfides. Our hypothesis on the genesis of the Onverwacht pipe and its mineralization is as follows: After near-consolidation of the layered series of the Critical Zone, the magnesian dunite pipe of Onverwacht was formed by upward penetration of magmas that replaced the existing cumulates initially by infiltration, followed by the development of a central channel where large volumes of magma flowed through. Fractional crystallization of olivine within the deeper magma chamber and/or during ascent of the melt resulted in the formation of a consanguineous, residual, more iron-rich melt. This melt also contained highly mobile, supercritical, water-bearing fluids and was continuously enriched in platinum group elements and other incompatible elements. In several closing pulses, the platinum group element-enriched residual melts crystallized and sealed the inner ore pipe. Crystallization of the melt resulted in the coeval formation of Fe-rich olivine, chromite, and platinum group minerals. The non-sulfide platinum group element mineralization was introduced in the form of nanoparticles and small droplets of platinum group minerals, which coagulated to form larger grains during evolution of the mineralizing system. The suspended platinum group minerals acted as collectors of other platinum group elements and incompatible elements during generation and ascent of the melt. With decreasing temperature, the platinum group mineral grains annealed and recrystallized, leading to the formation of composite platinum group mineral grains, complex intergrowths, or lamellar exsolution bodies. On further cooling, platinum group minerals overgrowing Pt-Fe alloys formed by reaction of leached elements and ligands like Sb, As, and S mobilized by supercritical magmatic/hydrothermal fluids. Redistribution of platinum group elements/platinum group minerals apparently only occurred on the scale of millimeters to centimeters. Finally, surface weathering led to the local formation of platinum group element oxides/hydroxides by oxidation of reactive precursor platinum group minerals.


Author(s):  
Sebastian Staude ◽  
Marcus Oelze ◽  
Gregor Markl

AbstractThe Moran komatiite-hosted Ni sulfide deposit at Kambalda (Australia) is one of the better preserved orebodies at Kambalda. Its geochemical signature is used to investigate the evolution of the sulfide mineralization. The orebody has several parts, including a flanking segment where massive sulfides formed relatively early and a central portion in a 40-m-deep erosional embayment representing a later generation of massive and net-textured sulfides. Basal massive sulfides within the deep embayment vary systematically in their chalcophile element contents (Ni, PGE, Au, Te, As, Bi). Elements compatible in monosulfide solid solution (MSS) exhibit the highest concentration at the edge of the orebody (up to 4.3 ppm Ir + Os + Ru + Rh), whereas incompatible elements are most concentrated in the centre (up to 11.2 ppm Pt + Pd + Au). This difference in element distributions is explained by fractional crystallization of sulfide melt from the edge towards the centre. To explain the vertical movement of the residual fractionated melt, a new model of sulfide crystallization is proposed. A low-viscosity boundary layer containing incompatible elements is formed between MSS and sulfide melt. This melt propagates with the crystallization front towards the centre of the sulfide melt pool. Trace element variations in pentlandite (e.g. Co) and composite Co- and Bi-bearing arsenide-telluride grains suggest that during the final stages of crystallization, an immiscible Co-As-Te-Bi melt is formed.


2021 ◽  
Author(s):  
Lei Gao ◽  
Shuwen Liu ◽  
Peter Cawood ◽  
Jintuan Wang ◽  
Guozheng Sun ◽  
...  

Abstract The redox evolution of Archean mantle impacted Earth differentiation, mantle melting and the nature of chemical equilibrium between mantle, ocean and atmosphere of the early Earth. However, how and why it varies with time remain controversial. Archean mantle-derived volcanic rocks, especially basalts are ideal lithologies for reconstructing the mantle redox state. Here we show that the ~3.8-2.5 Ga basalts from fourteen cratons are subdivided geochemically into two groups, B-1, showing incompatible element depleted and modern mid-ocean ridge basalt-like features ((Nb/La)PM ≥ 0.75) and B-2 ((Nb/La)PM < 0.75), characterized by modern island arc basalt-like features. Our updated V-Ti redox proxy indicates the Archean upper mantle was more reducing than today, and that there was a significant redox heterogeneity between ambient and modified mantle presumably related to crustal recycling, perhaps via plate subduction, as shown by B-1 and B-2 magmas, respectively. The oxygen fugacity of modified mantle exhibits a ~1.5-2.0 log units increase over ~3.8-2.5 Ga, whereas the ambient mantle becomes more and more heterogeneous with respect to redox, apart from a significant increase at ~2.7 Ga. These findings are coincident with the increase in the proportions of crustal recycling-related lithologies with associated enrichment of associated incompatible elements (e.g., Th/Nb), indicating that increasing recycling played a crucial role on the secular oxidation of Archean upper mantle.


Sign in / Sign up

Export Citation Format

Share Document