Evidence that auroral zone electric fields act in opposition to superrotation of the upper atmosphere

1976 ◽  
Vol 24 (4) ◽  
pp. 355-357 ◽  
Author(s):  
Michael C. Kelley
1997 ◽  
Vol 50 (4) ◽  
pp. 773 ◽  
Author(s):  
Raymond A. Greenwald

The plasma environment extending from the solar surface through interplanetary space to the outermost reaches of the Earth’s atmosphere and magnetic field is dynamic, often disturbed, and capable of harming humans and damaging manmade systems. Disturbances in this environment have been identified as space weather disturbances. At the present time there is growing interest in monitoring and predicting space weather disturbances. In this paper we present some of the difficulties involved in achieving this goal by comparing the processes that drive tropospheric-weather systems with those that drive space-weather systems in the upper atmosphere and ionosphere. The former are driven by pressure gradients which result from processes that heat and cool the atmosphere. The latter are driven by electric fields that result from interactions between the streams of ionised gases emerging from the Sun (solar wind) and the Earth’s magnetosphere. Although the dimensions of the Earth’s magnetosphere are vastly greater than those of tropospheric weather systems, the global space-weather response to changes in the solar wind is much more rapid than the response of tropospheric-weather systems to changing conditions. We shall demonstrate the rapid evolution of space-weather systems in the upper atmosphere through measurements with a global network of radars known as SuperDARN. We shall also describe how the SuperDARN network is evolving, including a newly funded Australian component known as the Tasman International Geospace Environmental Radar (TIGER).


2008 ◽  
Vol 26 (7) ◽  
pp. 1837-1850 ◽  
Author(s):  
D. L. Hysell ◽  
G. Michhue ◽  
M. F. Larsen ◽  
R. Pfaff ◽  
M. Nicolls ◽  
...  

Abstract. Vector electric fields and associated E×B drifts measured by a sounding rocket in the auroral zone during the NASA JOULE II experiment in January 2007, are compared with coherent scatter spectra measured by a 30 MHz radar imager in a common volume. Radar imaging permits precise collocation of the spectra with the background electric field. The Doppler shifts and spectral widths appear to be governed by the cosine and sine of the convection flow angle, respectively, and also proportional to the presumptive ion acoustic speed. The neutral wind also contributes to the Doppler shifts. These findings are consistent with those from the JOULE I experiment and also with recent numerical simulations of Farley Buneman waves and instabilities carried out by Oppenheim et al. (2008). Simple linear analysis of the waves offers some insights into the spectral moments. A formula relating the spectral width to the flow angle, ion acoustic speed, and other ionospheric parameters is derived.


Author(s):  
Edik Dubinin ◽  
Janet G. Luhmann ◽  
James A. Slavin

Knowledge about the solar wind interactions of Venus, Mars, and Mercury is rapidly expanding. While the Earth is also a terrestrial planet, it has been studied much more extensively and in far greater detail than its companions. As a result we direct the reader to specific references on that subject for obtaining an accurate comparative picture. Due to the strength of the Earth’s intrinsic dipole field, a relatively large volume is carved out in interplanetary space around the planet and its atmosphere. This “magnetosphere” is regarded as a shield from external effects, but in actuality much energy and momentum are channeled into it, especially at high latitudes, where the frequent interconnection between the Earth’s magnetic field and the interplanetary field allows some access by solar wind particles and electric fields to the upper atmosphere and ionosphere. Moreover, reconnection between oppositely directed magnetic fields occurs in Earth’s extended magnetotail—producing a host of other phenomena including injection of a ring current of energized internal plasma from the magnetotail into the inner magnetosphere—creating magnetic storms and enhancements in auroral activity and related ionospheric outflows. There are also permanent, though variable, trapped radiation belts that strengthen and decay with the rest of magnetospheric activity—depositing additional energy into the upper atmosphere over a wider latitude range. Virtually every aspect of the Earth’s solar wind interaction, highly tied to its strong intrinsic dipole field, has its own dedicated textbook chapters and review papers. Although Mercury, Venus, Earth, and Mars belong to the same class of rocky terrestrial planets, their interaction with solar wind is very different. Earth and Mercury have the intrinsic, mainly dipole magnetic field, which protects them from direct exposure by solar wind. In contrast, Venus and Mars have no such shield and solar wind directly impacts their atmospheres/ionospheres. In the first case, intrinsic magnetospheric cavities with a long tail are found. In the second case, magnetospheres are also formed but are generated by the electric currents induced in the conductive ionospheres. The interaction of solar wind with terrestrial planets also varies due to changes caused by different distances to the Sun and large variations in solar irradiance and solar wind parameters. Other important planetary differences like local strong crustal magnetization on Mars and almost total absence of the ionosphere on Mercury create new essential features to the interaction pattern. Solar wind might be also a feasible driver for planetary atmospheric losses of volatiles, which could historically affect the habitability of the terrestrial planets.


2017 ◽  
Vol 35 (5) ◽  
pp. 1165-1176 ◽  
Author(s):  
Regia Pereira Silva ◽  
Jose Humberto Andrade Sobral ◽  
Daiki Koga ◽  
Jonas Rodrigues Souza

Abstract. High-intensity, long-duration continuous auroral electrojet (AE) activity (HILDCAA) events may occur during a long-lasting recovery phase of a geomagnetic storm. They are a special kind of geomagnetic activity, different from magnetic storms or substorms. Ionized particles are pumped into the auroral region by the action of Alfvén waves, increasing the auroral current system. The Dst index, however, does not present a significant downward swing as it occurs during geomagnetic storms. During the HILDCAA occurrence, the AE index presents an intense and continuous activity. In this paper, the response of Brazilian equatorial ionosphere is studied during three HILDCAA events that occurred in the year of 2006 (the descending phase of solar cycle 23) using the digisonde data located at São Luís, Brazil (2.33° S, 44.2° W; dip latitude 1.75° S). Geomagnetic indices and interplanetary parameters were used to calculate a cross-correlation coefficient between the Ey component of the interplanetary electric field and the F2 electron density peak height variations during two situations: the first of them for two sets daytime and nighttime ranges, and the second one for the time around the pre-reversal enhancement (PRE) peak. The results showed that the pumping action of particle precipitation into the auroral zone has moderately modified the equatorial F2 peak height. However, F2 peak height seems to be more sensitive to HILDCAA effects during PRE time, showing the highest variations and sinusoidal oscillations in the cross-correlation indices.


2004 ◽  
Vol 22 (12) ◽  
pp. 4133-4142 ◽  
Author(s):  
A. Olsson ◽  
P. Janhunen ◽  
T. Karlsson ◽  
N. Ivchenko ◽  
L. G. Blomberg

Abstract. We make a statistical study of ionospheric Joule heating with the Poynting flux method using six months of Astrid-2/EMMA electric and magnetic field data during 1999 (solar maximum year). For the background magnetic field we use the IGRF model. Our results are in agreement with earlier statistical satellite studies using both the ΣPE2 method and the Poynting flux method. We present a rather comprehensive set of fitted Joule heating formulas expressing the Joule heating in given magnetic local time (MLT) and invariant latitude (ILAT) range under given solar illumination conditions as a function of the Kp index, the AE index, the Akasofu epsilon parameter and the solar wind kinetic energy flux. The study thus provides improved and more detailed estimates of the statistical Joule heating. Such estimates are necessary building blocks for future quantitative studies of the power budget in the magnetosphere and in the nightside auroral region. Key words. Ionosphere (electric fields and currents; ionosphere-magnetosphere interactions) – Magnetospheric physics (magnetospheric configuration and dynamics)


1978 ◽  
Vol 56 (11) ◽  
pp. 1412-1416 ◽  
Author(s):  
Syed Ziauddin ◽  
M. A. Abdu

Auroral substorm absorption events observed at two stations. Val d'Or, P.Q. and Ottawa, Ont., located on the lower latitude side of the auroral zone (around L = 4) show a consistent tendency for an apparent equatorward propagation of the events. The observed velocities of propagation do not show any local time dependence or other trends expected from a pure gradient B drift of substorm electrons from the midnight precipitation region to the day side. Though a limited number of events are analysed the results indicate the possible influence of strong electric fields on the drift velocities of the substorm electrons.


Sign in / Sign up

Export Citation Format

Share Document