Dating Late Pleistocene Pluvial Events and Tephras by Correlating Paleomagnetic Secular Variation Records from the Western Great Basin

1992 ◽  
Vol 38 (1) ◽  
pp. 46-59 ◽  
Author(s):  
Robert M. Negrini ◽  
Jonathan O. Davis

AbstractPaleomagnetic records are used to correlate sedimentary sequences from pluvial Lakes Chewaucan and Russell in the western Great Basin. This correlation is the basis for age control in the relatively poorly dated sequence from Lake Chewaucan. The resulting chronology supports a lack of sedimentation in Lake Chewaucan during the interval 27,400 to 23,200 yr B.P., an assertion supported by the presence of a lag deposit at the corresponding stratigraphic horizon. Because the Lake Chewaucan outcrop (near Summer Lake, Oregon) is near the bottom of the lake basin, we conclude that Lake Chewaucan was at a lowstand during this time interval. The Chewaucan lowstand is coeval with the lowstand accompanying the Wizard's Beach Recession (isotope stage 3) previously seen in the geologic record from nearby pluvial Lake Lahontan. The ages of six tephra layers, including the Trego Hot Springs tephra, were also estimated using the paleomagnetic correlation. Together, the new age of the Trego Hot Springs tephra (21,800 yr B.P.) and the lake surface level prehistory of Lake Chewaucan imply a revised model for the lake surface level prehistory of Lake Lahontan. The revised model includes a longer duration for the Wizard's Beach Recession and the occurrence of a younger lowstand of short duration soon after the lowstand corresponding to the Wizard's Beach Recession.

Geosciences ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 155
Author(s):  
Fiorenza Torricella ◽  
Romana Melis ◽  
Elisa Malinverno ◽  
Giorgio Fontolan ◽  
Mauro Bussi ◽  
...  

The continental margin is a key area for studying the sedimentary processes related to the advance and retreat of the Ross Ice Shelf (Antarctica); nevertheless, much remains to be investigated. The aim of this study is to increase the knowledge of the last glacial/deglacial dynamics in the Central Basin slope–basin system using a multidisciplinary approach, including integrated sedimentological, micropaleontological and tephrochronological information. The analyses carried out on three box cores highlighted sedimentary sequences characterised by tree stratigraphic units. Collected sediments represent a time interval from 24 ka Before Present (BP) to the present time. Grain size clustering and data on the sortable silt component, together with diatom, silicoflagellate and foraminifera assemblages indicate the influence of the ice shelf calving zone (Unit 1, 24–17 ka BP), progressive receding due to Circumpolar Deep Water inflow (Unit 2, 17–10.2 ka BP) and (Unit 3, 10.2 ka BP–present) the establishment of seasonal sea ice with a strengthening of bottom currents. The dominant and persistent process is a sedimentation controlled by contour currents, which tend to modulate intensity in time and space. A primary volcanic ash layer dated back at around 22 ka BP is correlated with the explosive activity of Mount Rittmann.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Akram Alizadeh

AbstractThe Urmia Lake Basin is located between the West and East Azerbaijan provinces in the northwest of Iran. Lake Urmia is the twentieth largest lake and second largest hypersaline lake in the world. Stratigraphic columns have been constructed, using published information, to compare the sedimentary units deposited from the Permian to the Neogene on the east and west sides of the lake, and to use these to quantity subsidence and uplift. East of the lake, the sedimentary section is more complete and has been the subject of detailed stratigraphic studies, including the compilation of measured sections for some units. West of the lake, the section is incomplete and less work has been done; three columns illustrate variations in the preserved stratigraphy for the time interval. In all cases, the columns are capped by the Oligocene–Miocene Qom Formation, which was deposited during a post-orogenic marine transgression and unconformably overlies units ranging from Precambrian to Cretaceous. Permian to Cretaceous stratigraphy is used to measure subsidence in the Lake Urmia basin up to the end of the Cretaceous, and then, the subsequent orogenic uplift, which was followed by further subsidence recorded by the deposition of the Qom Formation in the Oligocene–Miocene.


1998 ◽  
Vol 85 (1-4) ◽  
pp. 153-172 ◽  
Author(s):  
C Kuzucuoglu ◽  
J.-F Pastre ◽  
S Black ◽  
T Ercan ◽  
M Fontugne ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document