scholarly journals Near surface soil moisture estimation from microwave measurements

1988 ◽  
Vol 26 (2) ◽  
pp. 101-121 ◽  
Author(s):  
L. Bruckler ◽  
H. Witono ◽  
P. Stengel
Author(s):  
George Petropoulos ◽  
Hywel Griffiths ◽  
Wouter Dorigo ◽  
Angelika Xaver ◽  
Alexander Gruber

2019 ◽  
Vol 55 (12) ◽  
pp. 10443-10465 ◽  
Author(s):  
Dhruva Kathuria ◽  
Binayak P. Mohanty ◽  
Matthias Katzfuss

2015 ◽  
Vol 19 (12) ◽  
pp. 4831-4844 ◽  
Author(s):  
C. Draper ◽  
R. Reichle

Abstract. A 9 year record of Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E) soil moisture retrievals are assimilated into the Catchment land surface model at four locations in the US. The assimilation is evaluated using the unbiased mean square error (ubMSE) relative to watershed-scale in situ observations, with the ubMSE separated into contributions from the subseasonal (SMshort), mean seasonal (SMseas), and inter-annual (SMlong) soil moisture dynamics. For near-surface soil moisture, the average ubMSE for Catchment without assimilation was (1.8 × 10−3 m3 m−3)2, of which 19 % was in SMlong, 26 % in SMseas, and 55 % in SMshort. The AMSR-E assimilation significantly reduced the total ubMSE at every site, with an average reduction of 33 %. Of this ubMSE reduction, 37 % occurred in SMlong, 24 % in SMseas, and 38 % in SMshort. For root-zone soil moisture, in situ observations were available at one site only, and the near-surface and root-zone results were very similar at this site. These results suggest that, in addition to the well-reported improvements in SMshort, assimilating a sufficiently long soil moisture data record can also improve the model representation of important long-term events, such as droughts. The improved agreement between the modeled and in situ SMseas is harder to interpret, given that mean seasonal cycle errors are systematic, and systematic errors are not typically targeted by (bias-blind) data assimilation. Finally, the use of 1-year subsets of the AMSR-E and Catchment soil moisture for estimating the observation-bias correction (rescaling) parameters is investigated. It is concluded that when only 1 year of data are available, the associated uncertainty in the rescaling parameters should not greatly reduce the average benefit gained from data assimilation, although locally and in extreme years there is a risk of increased errors.


2017 ◽  
Vol 18 (3) ◽  
pp. 837-843 ◽  
Author(s):  
Randal D. Koster ◽  
Rolf H. Reichle ◽  
Sarith P. P. Mahanama

Abstract NASA’s Soil Moisture Active Passive (SMAP) mission provides global surface soil moisture retrievals with a revisit time of 2–3 days and a latency of 24 h. Here, to enhance the utility of the SMAP data, an approach is presented for improving real-time soil moisture estimates (nowcasts) and for forecasting soil moisture several days into the future. The approach, which involves using an estimate of loss processes (evaporation and drainage) and precipitation to evolve the most recent SMAP retrieval forward in time, is evaluated against subsequent SMAP retrievals themselves. The nowcast accuracy over the continental United States is shown to be markedly higher than that achieved with the simple yet common persistence approach. The accuracy of soil moisture forecasts, which rely on precipitation forecasts rather than on precipitation measurements, is reduced relative to nowcast accuracy but is still significantly higher than that obtained through persistence.


Sign in / Sign up

Export Citation Format

Share Document