The properties of the action of the quasi-gauge group on the space of Kaluza-Klein Riemannian metrics

1991 ◽  
Vol 29 (3) ◽  
pp. 341-355
Author(s):  
Witold Kondracki ◽  
Michał Kozak
2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
K. C. Matthew Cheung ◽  
Rahim Leung

Abstract We construct consistent Kaluza-Klein truncations of type IIA supergravity on (i) Σ2 × S3 and (ii) Σ3 × S3, where Σ2 = S2/Γ, ℝ2/Γ, or ℍ2/Γ, and Σ3 = S3/Γ, ℝ3/Γ, or ℍ3/Γ, with Γ a discrete group of symmetries, corresponding to NS5-branes wrapped on Σ2 and Σ3. The resulting theories are a D = 5, $$ \mathcal{N} $$ N = 4 gauged supergravity coupled to three vector multiplets with scalar manifold SO(1, 1) × SO(5, 3)/(SO(5) × SO(3)) and gauge group SO(2) × (SO(2) $$ {\ltimes}_{\Sigma_2} $$ ⋉ Σ 2 ℝ4) which depends on the curvature of Σ2, and a D = 4, $$ \mathcal{N} $$ N = 2 gauged supergravity coupled to one vector multiplet and two hypermultiplets with scalar manifold SU(1, 1)/U(1) × G2(2)/SO(4) and gauge group ℝ+ × ℝ+ for truncations (i) and (ii) respectively. Instead of carrying out the truncations at the 10-dimensional level, we show that they can be obtained directly by performing Inönü-Wigner contractions on the 5 and 4-dimensional gauged supergravity theories that come from consistent truncations of 11-dimensional supergravity associated with M5-branes wrapping Σ2 and Σ3. This suggests the existence of a broader class of lower-dimensional gauged supergravity theories related by group contractions that have a 10 or 11-dimensional origin.


2017 ◽  
Vol 32 (18) ◽  
pp. 1750095
Author(s):  
Ai Viet Nguyen ◽  
Tien Du Pham

Discretized Kaluza–Klein theory in [Formula: see text] spacetime can be constructed based on the concepts of noncommutative geometry. In this paper, we show that it is possible to incorporate the non-Abelian gauge fields in this framework. The generalized Hilbert–Einstein action is gauge invariant only in two cases. In the first case, the gauge group must be Abelian on one sheet of spacetime and non-Abelian on the other one. In the second case, the gauge group must be the same on two sheets of spacetime. Actually, the theories of electroweak and strong interactions can fit into these two cases.


1983 ◽  
Vol 61 (6) ◽  
pp. 844-856 ◽  
Author(s):  
M. W. Kalinowski

This paper is devoted to a five-dimensional unification of Moffat's theory of gravitation and electromagnetism. We found "interference effects" between gravitational and electromagnetic fields which appear to be due to the skew-symmetric part of the metric of Moffat's theory. Our unification, called the nonsymmetric Jordan–Thiry theory, becomes the classical Kaluza–Klein theory if the skew-symmetric part of the metric is zero. The possible generalization to an arbitrary gauge group is discussed.


1978 ◽  
Vol 39 (C6) ◽  
pp. C6-50-C6-52
Author(s):  
V. L. Golo ◽  
M. I. Monastyrsky
Keyword(s):  

1991 ◽  
Vol 161 (2) ◽  
pp. 13-75 ◽  
Author(s):  
Lev V. Prokhorov ◽  
Sergei V. Shabanov

1985 ◽  
Vol 146 (8) ◽  
pp. 655 ◽  
Author(s):  
I.Ya. Aref'eva ◽  
I.V. Volovich
Keyword(s):  

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Anamaría Font ◽  
Bernardo Fraiman ◽  
Mariana Graña ◽  
Carmen A. Núñez ◽  
Héctor Parra De Freitas

Abstract Compactifications of the heterotic string on special Td/ℤ2 orbifolds realize a landscape of string models with 16 supercharges and a gauge group on the left-moving sector of reduced rank d + 8. The momenta of untwisted and twisted states span a lattice known as the Mikhailov lattice II(d), which is not self-dual for d > 1. By using computer algorithms which exploit the properties of lattice embeddings, we perform a systematic exploration of the moduli space for d ≤ 2, and give a list of maximally enhanced points where the U(1)d+8 enhances to a rank d + 8 non-Abelian gauge group. For d = 1, these groups are simply-laced and simply-connected, and in fact can be obtained from the Dynkin diagram of E10. For d = 2 there are also symplectic and doubly-connected groups. For the latter we find the precise form of their fundamental groups from embeddings of lattices into the dual of II(2). Our results easily generalize to d > 2.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
A. de Giorgi ◽  
S. Vogl

Abstract The Kaluza-Klein (KK) decomposition of higher-dimensional gravity gives rise to a tower of KK-gravitons in the effective four-dimensional (4D) theory. Such massive spin-2 fields are known to be connected with unitarity issues and easily lead to a breakdown of the effective theory well below the naive scale of the interaction. However, the breakdown of the effective 4D theory is expected to be controlled by the parameters of the 5D theory. Working in a simplified Randall-Sundrum model we study the matrix elements for matter annihilations into massive gravitons. We find that truncating the KK-tower leads to an early breakdown of perturbative unitarity. However, by considering the full tower we obtain a set of sum rules for the couplings between the different KK-fields that restore unitarity up to the scale of the 5D theory. We prove analytically that these are fulfilled in the model under consideration and present numerical tests of their convergence. This work complements earlier studies that focused on graviton self-interactions and yields additional sum rules that are required if matter fields are incorporated into warped extra-dimensions.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Machiko Hatsuda ◽  
Shin Sasaki ◽  
Masaya Yata

Abstract We study the current algebras of the NS5-branes, the Kaluza-Klein (KK) five-branes and the exotic $$ {5}_2^2 $$ 5 2 2 -branes in type IIA/IIB superstring theories. Their worldvolume theories are governed by the six-dimensional $$ \mathcal{N} $$ N = (2, 0) tensor and the $$ \mathcal{N} $$ N = (1, 1) vector multiplets. We show that the current algebras are determined through the S- and T-dualities. The algebras of the $$ \mathcal{N} $$ N = (2, 0) theories are characterized by the Dirac bracket caused by the self-dual gauge field in the five-brane worldvolumes, while those of the $$ \mathcal{N} $$ N = (1, 1) theories are given by the Poisson bracket. By the use of these algebras, we examine extended spaces in terms of tensor coordinates which are the representation of ten-dimensional supersymmetry. We also examine the transition rules of the currents in the type IIA/IIB supersymmetry algebras in ten dimensions. Based on the algebras, we write down the section conditions in the extended spaces and gauge transformations of the supergravity fields.


Sign in / Sign up

Export Citation Format

Share Document