arbitrary gauge
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 4)

H-INDEX

18
(FIVE YEARS 0)

2021 ◽  
Vol 32 (1) ◽  
Author(s):  
Christian Richter ◽  
Eugenia Saorín Gómez

AbstractThe isoperimetric quotient of the whole family of inner and outer parallel bodies of a convex body is shown to be decreasing in the parameter of definition of parallel bodies, along with a characterization of those convex bodies for which that quotient happens to be constant on some interval within its domain. This is obtained relative to arbitrary gauge bodies, having the classical Euclidean setting as a particular case. Similar results are established for different families of Wulff shapes that are closely related to parallel bodies. These give rise to solutions of isoperimetric-type problems. Furthermore, new results on the monotonicity of quotients of other quermassintegrals different from surface area and volume, for the family of parallel bodies, are obtained.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
M.Y. Avetisyan ◽  
R.L. Mkrtchyan

Abstract We present a new expression for the partition function of the refined Chern-Simons theory on S3 with an arbitrary gauge group, which is explicitly equal to 1 when the coupling constant is zero. Using this form of the partition function we show that the previously known Krefl-Schwarz representation of the partition function of the refined Chern-Simons theory on S3 can be generalized to all simply laced algebras.For all non-simply laced gauge algebras, we derive similar representations of that partition function, which makes it possible to transform it into a product of multiple sine functions aiming at the further establishment of duality with the refined topological strings.


Author(s):  
Marco Billò ◽  
Marialuisa Frau ◽  
Francesco Fucito ◽  
José F. Morales ◽  
Alberto Lerda
Keyword(s):  

2017 ◽  
Vol 32 (14) ◽  
pp. 1750077 ◽  
Author(s):  
C. A. Escobar ◽  
L. F. Urrutia

Yang–Mills theories supplemented by an additional coordinate constraint, which is solved and substituted in the original Lagrangian, provide examples of the so-called Nambu models, in the case where such constraints arise from spontaneous Lorentz symmetry breaking. Some explicit calculations have shown that, after additional conditions are imposed, Nambu models are capable of reproducing the original gauge theories, thus making Lorentz violation unobservable and allowing the interpretation of the corresponding massless gauge bosons as the Goldstone bosons arising from the spontaneous symmetry breaking. A natural question posed by this approach in the realm of gauge theories is to determine under which conditions the recovery of an arbitrary gauge theory from the corresponding Nambu model, defined by a general constraint over the coordinates, becomes possible. We refer to these theories as extended Nambu models (ENM) and emphasize the fact that the defining coordinate constraint is not treated as a standard gauge fixing term. At this level, the mechanism for generating the constraint is irrelevant and the case of spontaneous Lorentz symmetry breaking is taken only as a motivation, which naturally bring this problem under consideration. Using a nonperturbative Hamiltonian analysis we prove that the ENM yields the original gauge theory after we demand current conservation for all time, together with the imposition of the Gauss laws constraints as initial conditions upon the dynamics of the ENM. The Nambu models yielding electrodynamics, Yang–Mills theories and linearized gravity are particular examples of our general approach.


2016 ◽  
Vol 68 (5) ◽  
pp. 1096-1119 ◽  
Author(s):  
Benjamin H. Smith

AbstractThis article provides an account of the functorial correspondence between irreducible singular G-monopoles on S1×Σ and stable meromorphic pairs on Σ. A theorem of B.Charbonneau and J. Hurtubise is thus generalized here from unitary to arbitrary compact, connected gauge groups. The required distinctions and similarities for unitary versus arbitrary gauge are clearly outlined, and many parallels are drawn for easy transition. Once the correspondence theorem is complete, the spectral decomposition is addressed.


2015 ◽  
Vol 30 (24) ◽  
pp. 1550145 ◽  
Author(s):  
Gwendolyn Lacroix ◽  
Claude Semay ◽  
Fabien Buisseret

In this paper, the thermodynamic properties of [Formula: see text] supersymmetric Yang–Mills theory with an arbitrary gauge group are investigated. In the confined range, we show that identifying the bound state spectrum with a Hagedorn one coming from noncritical closed superstring theory leads to a prediction for the value of the deconfining temperature [Formula: see text] that agrees with recent lattice data. The deconfined phase is studied by resorting to a [Formula: see text]-matrix formulation of statistical mechanics in which the medium under study is seen as a gas of quasigluons and quasigluinos interacting nonperturbatively. Emphasis is put on the temperature range (1–5) [Formula: see text], where the interactions are expected to be strong enough to generate bound states. Binary bound states of gluons and gluinos are indeed found to be bound up to 1.4 [Formula: see text] for any gauge group. The equation of state is then computed numerically for [Formula: see text] and [Formula: see text], and discussed in the case of an arbitrary gauge group. It is found to be nearly independent of the gauge group and very close to that of nonsupersymmetric Yang–Mills when normalized to the Stefan–Boltzmann pressure and expressed as a function of [Formula: see text].


2014 ◽  
Vol 92 (4) ◽  
pp. 311-315 ◽  
Author(s):  
Hoavo Hova

We propose a cosmological model containing a cosmological term in arbitrary gauge in Lyra’s geometry. In the absence of matter fields (such as radiation or baryonic), a constant cosmological term does not lead to the de Sitter universe as it is seen in Riemannian geometry, while a time-varying cosmological term can drive the universe into an accelerated expansion.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Irina Dymnikova ◽  
Alexander Sakharov ◽  
Jürgen Ulbricht

Experimental data reveal with a 5σsignificance the existence of a characteristic minimal lengthle=1.57×10-17 cm at the scaleE=1.253TeV in the annihilation reactione+e-→γγ(γ). Nonlinear electrodynamics coupled to gravity and satisfying the weak energy condition predicts, for an arbitrary gauge invariant Lagrangian, the existence of spinning charged electromagnetic soliton asymptotically Kerr-Newman for a distant observer with the gyromagnetic ratiog=2. Its internal structure includes a rotating equatorial disk of de Sitter vacuum which has properties of a perfect conductor and ideal diamagnetic, displays superconducting behavior, supplies a particle with the finite positive electromagnetic mass related to breaking of space-time symmetry, and gives some idea about the physical origin of a minimal length in annihilation.


Sign in / Sign up

Export Citation Format

Share Document