A novel enzyme system for the reduction of 3-oxo bile acids in human red blood cells

Steroids ◽  
1996 ◽  
Vol 61 (7) ◽  
pp. 416-420 ◽  
Author(s):  
Junichi Goto ◽  
Hiroya Miura ◽  
Masayuki Ando ◽  
Yasuhiro Yamato ◽  
Shigeo Ikegawa ◽  
...  
2011 ◽  
Vol 138 (4) ◽  
pp. 381-391 ◽  
Author(s):  
Teresa Tiffert ◽  
Virgilio L. Lew

Elevated intracellular calcium generates rapid, profound, and irreversible changes in the nucleotide metabolism of human red blood cells (RBCs), triggered by the adenosine triphosphatase (ATPase) activity of the powerful plasma membrane calcium pump (PMCA). In the absence of glycolytic substrates, Ca2+-induced nucleotide changes are thought to be determined by the interaction between PMCA ATPase, adenylate kinase, and AMP-deaminase enzymes, but the extent to which this three-enzyme system can account for the Ca2+-induced effects has not been investigated in detail before. Such a study requires the formulation of a model incorporating the known kinetics of the three-enzyme system and a direct comparison between its predictions and precise measurements of the Ca2+-induced nucleotide changes, a precision not available from earlier studies. Using state-of-the-art high-performance liquid chromatography, we measured the changes in the RBC contents of ATP, ADP, AMP, and IMP during the first 35 min after ionophore-induced pump-saturating Ca2+ loads in the absence of glycolytic substrates. Comparison between measured and model-predicted changes revealed that for good fits it was necessary to assume mean ATPase Vmax values much higher than those ever measured by PMCA-mediated Ca2+ extrusion. These results suggest that the local nucleotide concentrations generated by ATPase activity at the inner membrane surface differed substantially from those measured in bulk cell extracts, supporting previous evidence for the existence of a submembrane microdomain with a distinct nucleotide metabolism.


1990 ◽  
Vol 265 (27) ◽  
pp. 16035-16038 ◽  
Author(s):  
P Bütikofer ◽  
Z W Lin ◽  
D T Chiu ◽  
B Lubin ◽  
F A Kuypers

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ratnasekhar Ch ◽  
Guillaume Rey ◽  
Sandipan Ray ◽  
Pawan K. Jha ◽  
Paul C. Driscoll ◽  
...  

AbstractCircadian clocks coordinate mammalian behavior and physiology enabling organisms to anticipate 24-hour cycles. Transcription-translation feedback loops are thought to drive these clocks in most of mammalian cells. However, red blood cells (RBCs), which do not contain a nucleus, and cannot perform transcription or translation, nonetheless exhibit circadian redox rhythms. Here we show human RBCs display circadian regulation of glucose metabolism, which is required to sustain daily redox oscillations. We found daily rhythms of metabolite levels and flux through glycolysis and the pentose phosphate pathway (PPP). We show that inhibition of critical enzymes in either pathway abolished 24-hour rhythms in metabolic flux and redox oscillations, and determined that metabolic oscillations are necessary for redox rhythmicity. Furthermore, metabolic flux rhythms also occur in nucleated cells, and persist when the core transcriptional circadian clockwork is absent in Bmal1 knockouts. Thus, we propose that rhythmic glucose metabolism is an integral process in circadian rhythms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Diego Sbardella ◽  
Grazia Raffaella Tundo ◽  
Luisa Campagnolo ◽  
Giuseppe Valacchi ◽  
Augusto Orlandi ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


Sign in / Sign up

Export Citation Format

Share Document