An estimate of the effect of rounding errors on the accuracy of the elimination of variables in sets of linear inequalities

Author(s):  
A.V. Lotov
2021 ◽  
Vol 11 (12) ◽  
pp. 5474
Author(s):  
Tuomo Poutanen

This article addresses the process to optimally select safety factors and characteristic values for the Eurocodes. Five amendments to the present codes are proposed: (1) The load factors are fixed, γG = γQ, by making the characteristic load of the variable load changeable, it simplifies the codes and lessens the calculation work. (2) Currently, the characteristic load of the variable load is the same for all variable loads. It creates excess safety and material waste for the variable loads with low variation. This deficiency can be avoided by applying the same amendment as above. (3) Various materials fit with different accuracy in the reliability model. This article explains two options to reduce this difficulty. (4) A method to avoid rounding errors in the safety factors is explained. (5) The current safety factors are usually set by minimizing the reliability indexes regarding the target when the obtained codes include considerable safe and unsafe design cases with the variability ratio (high reliability/low) of about 1.4. The proposed three code models match the target β50 = 3.2 with high accuracy, no unsafe design cases and insignificant safe design cases with the variability ratio 1.07, 1.03 and 1.04.


2020 ◽  
Vol 52 (4) ◽  
pp. 1249-1283
Author(s):  
Masatoshi Kimura ◽  
Tetsuya Takine

AbstractThis paper considers ergodic, continuous-time Markov chains $\{X(t)\}_{t \in (\!-\infty,\infty)}$ on $\mathbb{Z}^+=\{0,1,\ldots\}$ . For an arbitrarily fixed $N \in \mathbb{Z}^+$ , we study the conditional stationary distribution $\boldsymbol{\pi}(N)$ given the Markov chain being in $\{0,1,\ldots,N\}$ . We first characterize $\boldsymbol{\pi}(N)$ via systems of linear inequalities and identify simplices that contain $\boldsymbol{\pi}(N)$ , by examining the $(N+1) \times (N+1)$ northwest corner block of the infinitesimal generator $\textbf{\textit{Q}}$ and the subset of the first $N+1$ states whose members are directly reachable from at least one state in $\{N+1,N+2,\ldots\}$ . These results are closely related to the augmented truncation approximation (ATA), and we provide some practical implications for the ATA. Next we consider an extension of the above results, using the $(K+1) \times (K+1)$ ( $K > N$ ) northwest corner block of $\textbf{\textit{Q}}$ and the subset of the first $K+1$ states whose members are directly reachable from at least one state in $\{K+1,K+2,\ldots\}$ . Furthermore, we introduce new state transition structures called (K, N)-skip-free sets, using which we obtain the minimum convex polytope that contains $\boldsymbol{\pi}(N)$ .


2020 ◽  
Vol 30 (3) ◽  
pp. 187-202
Author(s):  
Sergey V. Polin

AbstractThe previous paper was concerned with systems of equations over a certain family 𝓢 of quasigroups. In that work a method of elimination of an outermost variable from the system of equations was suggested and it was shown that further elimination of variables requires that the family 𝓢 of quasigroups satisfy the generalized distributive law (GDL). In this paper we describe families 𝓢 that satisfy GDL. The results are applied to construct classes of easily solvable systems of equations.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 317
Author(s):  
Diogo Freitas ◽  
Luiz Guerreiro Lopes ◽  
Fernando Morgado-Dias

Finding arbitrary roots of polynomials is a fundamental problem in various areas of science and engineering. A myriad of methods was suggested to address this problem, such as the sequential Newton’s method and the Durand–Kerner (D–K) simultaneous iterative method. The sequential iterative methods, on the one hand, need to use a deflation procedure in order to compute approximations to all the roots of a given polynomial, which can produce inaccurate results due to the accumulation of rounding errors. On the other hand, the simultaneous iterative methods require good initial guesses to converge. However, Artificial Neural Networks (ANNs) are widely known by their capacity to find complex mappings between the dependent and independent variables. In view of this, this paper aims to determine, based on comparative results, whether ANNs can be used to compute approximations to the real and complex roots of a given polynomial, as an alternative to simultaneous iterative algorithms like the D–K method. Although the results are very encouraging and demonstrate the viability and potentiality of the suggested approach, the ANNs were not able to surpass the accuracy of the D–K method. The results indicated, however, that the use of the approximations computed by the ANNs as the initial guesses for the D–K method can be beneficial to the accuracy of this method.


2008 ◽  
Vol 83 (3-4) ◽  
pp. 512-529 ◽  
Author(s):  
V. P. Maslov ◽  
V. E. Nazaikinskii

Author(s):  
VLADIMIR S. KAZANTSEV

The package of applied programs named KVAZAR has been elaborated to be used for classification, diagnostic, predicative, experimental data analysis problems. The package may be used in medicine, biology, geology, economics, engineering and some other problems. The algorithmical base of the package is the method of pattern recognition, based on the linear inequalities and committee constructions. Other algorithms are used too. The package KVAZAR is intended to be used with IBM PC AT/XT. The range of processing data is bounded by 40,000 numbers.


Sign in / Sign up

Export Citation Format

Share Document