The visual perception of three-dimensional shape from self-motion and object-motion

1994 ◽  
Vol 34 (18) ◽  
pp. 2331-2336 ◽  
Author(s):  
V. Cornilleau-Pérès ◽  
J. Droulez
i-Perception ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 204166952095209
Author(s):  
James T. Todd

In 1966, James Gibson first presented his theory of the ambient optic array, and he proposed a new field of ecological optics that he hoped would advance our knowledge on this topic. This study will consider how his ideas have largely come to fruition over the past 50 years. It reviews the research on the visual perception of three-dimensional shape from shading, the effects of ambient light from surface interreflections on observers’ perceptions, the perception of the light field, and the perception of surface materials. Finally, it also considers Gibson’s impact on these developments.


1995 ◽  
Vol 35 (4) ◽  
pp. 453-462 ◽  
Author(s):  
T.M.H. Dijkstra ◽  
V. Cornilleau-Pérès ◽  
C.C.A.M. Gielen ◽  
J. Droulez

2006 ◽  
Vol 37 (4) ◽  
pp. 583
Author(s):  
Michael McGowan

This article examines the relatively new fields of colour and shape trade marks. It was initially feared by some academics that the new marks would encroach on the realms of patent and copyright.  However, the traditional requirements of trade mark law, such as functionality and descriptiveness, have meant that trade marks in colour and shape are extremely hard to acquire if they do not have factual distinctiveness. As colour and shape trade marks have no special restrictions, it is proposed that the combination trade mark theory and analysis from the Diamond T case should be used as a way to make them more accessible. The combination analysis can be easily applied because every product has a three dimensional shape and a fourth dimension of colour.


2017 ◽  
Author(s):  
Tatsuya Kitamura ◽  
Hironori Takemoto ◽  
Hisanori Makinae ◽  
Tetsutaro Yamaguchi ◽  
Kotaro Maki

i-Perception ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 204166952098231
Author(s):  
Masakazu Ohara ◽  
Juno Kim ◽  
Kowa Koida

Perceiving the shape of three-dimensional objects is essential for interacting with them in daily life. If objects are constructed from different materials, can the human visual system accurately estimate their three-dimensional shape? We varied the thickness, motion, opacity, and specularity of globally convex objects rendered in a photorealistic environment. These objects were presented under either dynamic or static viewing condition. Observers rated the overall convexity of these objects along the depth axis. Our results show that observers perceived solid transparent objects as flatter than the same objects rendered with opaque reflectance properties. Regional variation in local root-mean-square image contrast was shown to provide information that is predictive of perceived surface convexity.


Sign in / Sign up

Export Citation Format

Share Document