transparent objects
Recently Published Documents


TOTAL DOCUMENTS

242
(FIVE YEARS 49)

H-INDEX

18
(FIVE YEARS 2)

2022 ◽  
Vol 148 ◽  
pp. 106774
Author(s):  
Kejing He ◽  
Congying Sui ◽  
Tianyu Huang ◽  
Rong Dai ◽  
Congyi Lyu ◽  
...  

2021 ◽  
Vol 13 (4) ◽  
pp. 91
Author(s):  
Arkadiusz Kuś ◽  
Wojciech Krauze ◽  
Małgorzata Kujawińska

In this paper we briefly present the history and outlook on the development of two seemingly distant techniques which may be brought close together with a unified theoretical model described as common k-space theory. This theory also known as the Fourier diffraction theorem is much less common in optical coherence tomography than its traditional mathematical model, but it has been extensively studied in digital holography and, more importantly, optical diffraction tomography. As demonstrated with several examples, this link is one of the important factors for future development of both techniques. Full Text: PDF ReferencesN. Leith, J. Upatnieks, "Reconstructed Wavefronts and Communication Theory", J. Opt. Soc. Am. 52(10), 1123 (1962). CrossRef Y. Park, C. Depeursinge, G. Popescu, "Quantitative phase imaging in biomedicine", Nat. Photonics 12, 578 (2018). CrossRef D. Huang et al., "Optical Coherence Tomography", Science 254(5035), 1178 (1991). CrossRef D. P. Popescu, C. Flueraru, S. Chang, J. Disano, S. Sherif, M.G. Sowa, "Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications", Biophys. Rev. 3(3), 155 (2011). CrossRef M. Wojtkowski, V. Srinivasan, J.G. Fujimoto, T. Ko, J.S. Schuman, A. Kowalczyk, J.S. Duker, "Three-dimensional Retinal Imaging with High-Speed Ultrahigh-Resolution Optical Coherence Tomography", Ophthalmology 112(10), 1734 (2005). CrossRef K.C. Zhou, R. Qian, A.-H. Dhalla, S. Farsiu, J.A. Izatt, "Unified k-space theory of optical coherence tomography", Adv. Opt. Photon. 13(2), 462 (2021). CrossRef A.F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry", Opt. Comm. 117(1-2), 43 (1995). CrossRef E. Wolf, "Determination of the Amplitude and the Phase of Scattered Fields by Holography", J. Opt. Soc. Am. 60(1), 18 (1970). CrossRef E. Wolf, "Three-dimensional structure determination of semi-transparent objects from holographic data", Opt. Comm. 1(4), 153 (1969). CrossRef V. Balasubramani et al., "Roadmap on Digital Holography-Based Quantitative Phase Imaging", J. Imaging 7(12), 252 (2021). CrossRef A. Kuś, W. Krauze, P.L. Makowski, M. Kujawińska, "Holographic tomography: hardware and software solutions for 3D quantitative biomedical imaging (Invited paper)", ETRI J. 41(1), 61 (2019). CrossRef A. Kuś, M. Dudek, M. Kujawińska, B. Kemper, A. Vollmer, "Tomographic phase microscopy of living three-dimensional cell cultures", J. Biomed. Opt. 19(4), 46009 (2014). CrossRef O. Haeberlé, K. Belkebir, H. Giovaninni, A. Sentenac, "Tomographic diffractive microscopy: basics, techniques and perspectives", J. Mod. Opt. 57(9), 686 (2010). CrossRef B. Simon et al., "Tomographic diffractive microscopy with isotropic resolution", Optica 4(4), 460 (2017). CrossRef B.A. Roberts, A.C. Kak, "Reflection Mode Diffraction Tomography", Ultrason. Imag. 7, 300 (1985). CrossRef M. Sarmis et al., "High resolution reflection tomographic diffractive microscopy", J. Mod. Opt. 57(9), 740 (2010). CrossRef L. Foucault et al., "Versatile transmission/reflection tomographic diffractive microscopy approach", J. Opt. Soc. Am. A 36(11), C18 (2019). CrossRef W. Krauze, P. Ossowski, M. Nowakowski, M. Szkulmowski, M. Kujawińska, "Enhanced QPI functionality by combining OCT and ODT methods", Proc. SPIE 11653, 116530B (2021). CrossRef E. Mudry, P.C. Chaumet, K. Belkebir, G. Maire, A. Sentenac, "Mirror-assisted tomographic diffractive microscopy with isotropic resolution", Opt. Lett. 35(11), 1857 (2010). CrossRef P. Hosseini, Y. Sung, Y. Choi, N. Lue, Z. Yaqoob, P. So, "Scanning color optical tomography (SCOT)", Opt. Expr. 23(15), 19752 (2015). CrossRef J. Jung, K. Kim, J. Yoon, Y. Park, "Hyperspectral optical diffraction tomography", Opt. Expr. 24(3), 1881 (2016). CrossRef T. Zhang et al., Biomed. "Multi-wavelength multi-angle reflection tomography", Opt. Expr. 26(20), 26093 (2018). CrossRef R.A. Leitgeb, "En face optical coherence tomography: a technology review [Invited]", Biomed. Opt. Expr. 10(5), 2177 (2019). CrossRef J.F. de Boer, R. Leitgeb, M. Wojtkowski, "Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited]", Biomed. Opt. Expr. 8(7), 3248 (2017). CrossRef T. Anna, V. Srivastava, C. Shakher, "Transmission Mode Full-Field Swept-Source Optical Coherence Tomography for Simultaneous Amplitude and Quantitative Phase Imaging of Transparent Objects", IEEE Photon. Technol. Lett. 23(11), 899 (2011). CrossRef M.T. Rinehart, V. Jaedicke, A. Wax, "Quantitative phase microscopy with off-axis optical coherence tomography", Opt. Lett. 39(7), 1996 (2014). CrossRef C. Photiou, C. Pitris, "Dual-angle optical coherence tomography for index of refraction estimation using rigid registration and cross-correlation", J. Biomed. Opt. 24(10), 1 (2019). CrossRef Y. Zhou, K.K.H. Chan, T. Lai, S. Tang, "Characterizing refractive index and thickness of biological tissues using combined multiphoton microscopy and optical coherence tomography", Biomed. Opt. Expr. 4(1), 38 (2013). CrossRef K.C. Zhou, R. Qian, S. Degan, S. Farsiu, J.A. Izatt, "Optical coherence refraction tomography", Nat. Photon. 13, 794 (2019). CrossRef


2021 ◽  
Vol 2021 (29) ◽  
pp. 60-65
Author(s):  
Tucker Downs ◽  
Michael Murdoch

Color appearance of transparent objects is not adequately described by colorimetry or color appearance models. Despite the fact that the retinal projection of a transparent object is a combination of its color and the background, measurements of this physical combination fail to predict the saliency with which we perceive the object's color. When the perceive color forms in the mind, awareness of their physical relationship separates the physical combination into two unique perceptions. This is known as color scissioning. In this paper a psychophysical experiment utilizing a seethrough augmented reality display to compare virtual transparent color samples to real color samples is described and confirms the scissioning effect for lightness and chroma attributes. A previous model of color scissioning for AR viewing conditions is tested against this new data and does not satisfactorily predict the observers' perceptions. However, the model is still found to be a useful tool for analyzing the color scissioning and provides valuable insight on future research directions.


2021 ◽  
Author(s):  
Jaesik Chang ◽  
Minju Kim ◽  
Seongmin Kang ◽  
Heungwoo Han ◽  
Sunpyo Hong ◽  
...  

Author(s):  
Di Lu ◽  
Zuwei Yan ◽  
Chengrui Xu ◽  
Jiaqi Li ◽  
Rui Zhang ◽  
...  

Author(s):  
Enze Xie ◽  
Wenjia Wang ◽  
Wenhai Wang ◽  
Peize Sun ◽  
Hang Xu ◽  
...  

This work presents a new fine-grained transparent object segmentation dataset, termed Trans10K-v2, extending Trans10K-v1, the first large-scale transparent object segmentation dataset. Unlike Trans10K-v1 that only has two limited categories, our new dataset has several appealing benefits. (1) It has 11 fine-grained categories of transparent objects, commonly occurring in the human domestic environment, making it more practical for real-world application. (2) Trans10K-v2 brings more challenges for the current advanced segmentation methods than its former version. Furthermore, a novel Transformer-based segmentation pipeline termed Trans2Seg is proposed. Firstly, the Transformer encoder of Trans2Seg provides the global receptive field in contrast to CNN's local receptive field, which shows excellent advantages over pure CNN architectures. Secondly, by formulating semantic segmentation as a problem of dictionary look-up, we design a set of learnable prototypes as the query of Trans2Seg's Transformer decoder, where each prototype learns the statistics of one category in the whole dataset. We benchmark more than 20 recent semantic segmentation methods, demonstrating that Trans2Seg significantly outperforms all the CNN-based methods, showing the proposed algorithm's potential ability to solve transparent object segmentation.Code is available in https://github.com/xieenze/Trans2Seg.


2021 ◽  
Vol 5 (1) ◽  
pp. 33-40
Author(s):  
Jaroslaw Stryczek ◽  
Piotr Antoniak ◽  
Michal Banas ◽  
Piotr Stryczek ◽  
Oleg Yakhno ◽  
...  

The article describes the course of the ultrasonic cavitation in a hydraulic tank and the hydrodynamic cavitation in a gear pump. The course of those phenomena was confirmed in experimental tests carried out with the use of a tank and a pump made of transparent plastics. It has been proved that the oscillator-cavitation system made according to the original project is useful to induce the phenomenon of ultrasonic cavitation. It has also been shown that the PIV visualization method, consisting in a special system of illuminating transparent objects and recording the flow through those objects with a fast camera, is useful for the studying of the cavitation phenomena. A visible interaction between the ultrasonic and the hydrodynamic cavitation was observed. The induction of ultrasonic cavitation in the tank causes degassing of the oil, and the degassed oil supplying the pump reduces the hydrodynamic cavitation in its internal channels and clearances. This is an example of beneficial effects of the ultrasonic cavitation on the operation of a pump and a hydraulic system. The presented work is an example of effective co-operation between the communities of Wroclaw University of Science and Technology and Igor Sikorsky Kiyv Politechnic Institute, National Technical University of Ukraine.


Sign in / Sign up

Export Citation Format

Share Document