shape from shading
Recently Published Documents


TOTAL DOCUMENTS

744
(FIVE YEARS 40)

H-INDEX

45
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Kuros Yalpani

An algorithm is proposed that extracts 3D shape from shading information in a digital image. The algorithm assumes that there is only a single source of light producing the image, that the surface of the shape giving rise to the image is Lambertian (matte) and that its shape can be locally approximated by a quadratic function. Previous work shows that under these assumptions, robust shape from shading is possible, though slow for large images because a non-linear optimization method is applied in order to estimate local quadratic surface patches from image intensities. The work presented here shows that local quadratic surface patch estimates can be computed, without prior knowledge of the light source direction, via a linear least squares optimization, thus greatly improving the algebraic complexity and run-time of the existing algorithms.


2021 ◽  
Author(s):  
Kuros Yalpani

An algorithm is proposed that extracts 3D shape from shading information in a digital image. The algorithm assumes that there is only a single source of light producing the image, that the surface of the shape giving rise to the image is Lambertian (matte) and that its shape can be locally approximated by a quadratic function. Previous work shows that under these assumptions, robust shape from shading is possible, though slow for large images because a non-linear optimization method is applied in order to estimate local quadratic surface patches from image intensities. The work presented here shows that local quadratic surface patch estimates can be computed, without prior knowledge of the light source direction, via a linear least squares optimization, thus greatly improving the algebraic complexity and run-time of this existing algorithms.


2021 ◽  
Author(s):  
Kuros Yalpani

An algorithm is proposed that extracts 3D shape from shading information in a digital image. The algorithm assumes that there is only a single source of light producing the image, that the surface of the shape giving rise to the image is Lambertian (matte) and that its shape can be locally approximated by a quadratic function. Previous work shows that under these assumptions, robust shape from shading is possible, though slow for large images because a non-linear optimization method is applied in order to estimate local quadratic surface patches from image intensities. The work presented here shows that local quadratic surface patch estimates can be computed, without prior knowledge of the light source direction, via a linear least squares optimization, thus greatly improving the algebraic complexity and run-time of this existing algorithms.


Measurement ◽  
2021 ◽  
pp. 110029
Author(s):  
Jiacheng Fan ◽  
Yuan Feng ◽  
Jinqiu Mo ◽  
Shigang Wang ◽  
Qinghua Liang

Cognition ◽  
2021 ◽  
Vol 212 ◽  
pp. 104664
Author(s):  
Ayelet Sapir ◽  
Ronen Hershman ◽  
Avishai Henik

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Christian Kapeller ◽  
Ernst Bodenstorfer

Abstract Battery technology is a key component in current electric vehicle applications and an important building block for upcoming smart grid technologies. The performance of batteries depends largely on quality control during their production process. Defects introduced in the production of electrodes can lead to degraded performance and, more importantly, to short circuits in final cells, which is highly safety-critical. In this paper, we propose an inspection system architecture that can detect defects, such as missing coating, agglomerates, and pinholes on coated electrodes. Our system is able to acquire valuable production quality control metrics, like surface roughness. By employing photometric stereo techniques, a shape from shading algorithm, our system surmounts difficulties that arise while optically inspecting the black to dark gray battery coating materials. We present in detail the acquisition concept of the proposed system architecture, and analyze its acquisition-, as well as, its surface reconstruction performance in experiments. We carry these out utilizing two different implementations that can operate at a production speed of up to 2000 mm/s at a resolution of 50 µm per pixel. In this work we aim to provide a system architecture that can provide a reliable contribution to ensuring optimal performance of produced battery cells.


2021 ◽  
Vol 13 (11) ◽  
pp. 2185
Author(s):  
Yu Tao ◽  
Sylvain Douté ◽  
Jan-Peter Muller ◽  
Susan J. Conway ◽  
Nicolas Thomas ◽  
...  

We introduce a novel ultra-high-resolution Digital Terrain Model (DTM) processing system using a combination of photogrammetric 3D reconstruction, image co-registration, image super-resolution restoration, shape-from-shading DTM refinement, and 3D co-alignment methods. Technical details of the method are described, and results are demonstrated using a 4 m/pixel Trace Gas Orbiter Colour and Stereo Surface Imaging System (CaSSIS) panchromatic image and an overlapping 6 m/pixel Mars Reconnaissance Orbiter Context Camera (CTX) stereo pair to produce a 1 m/pixel CaSSIS Super-Resolution Restoration (SRR) DTM for different areas over Oxia Planum on Mars—the future ESA ExoMars 2022 Rosalind Franklin rover’s landing site. Quantitative assessments are made using profile measurements and the counting of resolvable craters, in comparison with the publicly available 1 m/pixel High-Resolution Imaging Experiment (HiRISE) DTM. These assessments demonstrate that the final resultant 1 m/pixel CaSSIS DTM from the proposed processing system has achieved comparable and sometimes more detailed 3D reconstruction compared to the overlapping HiRISE DTM.


Sign in / Sign up

Export Citation Format

Share Document