Removal of trihalomethane precursors from eutrophic water by dissolved air flotation

1993 ◽  
Vol 27 (1) ◽  
pp. 41-49 ◽  
Author(s):  
R. Gehr ◽  
C. Swartz ◽  
G. Offringa
2018 ◽  
Vol 77 (7) ◽  
pp. 1802-1809 ◽  
Author(s):  
Zhuang Tian ◽  
Can Wang ◽  
Min Ji

Abstract Eutrophication of urban rivers has caused severe environmental problems due to the pollution from point and diffuse sources. Although eutrophication can be alleviated by reducing the input to the river system, fast-treating terminal control technologies, especially under emergent situations, should be developed to reduce risks induced by eutrophication. The present study developed an emergency purification device based on dissolved air flotation (DAF) technology. After equipment commissioning and parameter optimization for applications in the field of engineering, the device was found to effectively remove total phosphorus, chlorophyll a, chemical oxygen demand, and turbidity in water by controlling the coagulant dosage and adjusting the gas-liquid mixing pump parameters. Dissolved air in water could enhance dissolved oxygen, and dissolved oxygen in polluted rivers could be raised from 0.2–2 mg/L to 3–3.5 mg/L. Removal of total nitrogen was poor because the majority of nitrogen contents were dissolved. Finally, DAF has been proven to be a promising technology due to its ease of implementation, low equipment investment requirement, and low operation cost.


1995 ◽  
Vol 31 (3-4) ◽  
pp. 25-35 ◽  
Author(s):  
E. M. Rykaart ◽  
J. Haarhoff

A simple two-phase conceptual model is postulated to explain the initial growth of microbubbles after pressure release in dissolved air flotation. During the first phase bubbles merely expand from existing nucleation centres as air precipitates from solution, without bubble coalescence. This phase ends when all excess air is transferred to the gas phase. During the second phase, the total air volume remains the same, but bubbles continue to grow due to bubble coalescence. This model is used to explain the results from experiments where three different nozzle variations were tested, namely a nozzle with an impinging surface immediately outside the nozzle orifice, a nozzle with a bend in the nozzle channel, and a nozzle with a tapering outlet immediately outside the nozzle orifice. From these experiments, it is inferred that the first phase of bubble growth is completed at approximately 1.7 ms after the start of pressure release.


1998 ◽  
Vol 37 (2) ◽  
pp. 35-42 ◽  
Author(s):  
M. J. Bauer ◽  
R. Bayley ◽  
M. J. Chipps ◽  
A. Eades ◽  
R. J. Scriven ◽  
...  

Thames Water treats approximately 2800Ml/d of water originating mainly from the lowland rivers Thames and Lee for supply to over 7.3million customers, principally in the cities of London and Oxford. This paper reviews aspects of Thames Water's research, design and operating experiences of treating algal rich reservoir stored lowland water. Areas covered include experiences of optimising reservoir management, uprating and upgrading of rapid gravity filtration (RGF), standard co-current dissolved air flotation (DAF) and counter-current dissolved air flotation/filtration (COCO-DAFF®) to counter operational problems caused by seasonal blooms of filter blocking algae such as Melosira spp., Aphanizomenon spp. and Anabaena spp. A major programme of uprating and modernisation (inclusion of Advanced Water Treatment: GAC and ozone) of the major works is in progress which, together with the Thames Tunnel Ring Main, will meet London's water supply needs into the 21st Century.


2016 ◽  
Vol 2016 (9) ◽  
pp. 3543-3551
Author(s):  
H.W.H Menkveld ◽  
N. C Boelee ◽  
G.O.J Smith ◽  
S Christian

2021 ◽  
Vol 40 ◽  
pp. 101847
Author(s):  
Yonglei Wang ◽  
Wentao Sun ◽  
Luming Ding ◽  
Wei Liu ◽  
Liping Tian ◽  
...  

2001 ◽  
Vol 43 (8) ◽  
pp. 83-90 ◽  
Author(s):  
A. C. Pinto Filho ◽  
C. C. Brandão

A bench scale study was carried out in order to evaluate the applicability of dissolved air flotation (DAF) as an advanced treatment for effluents from three different domestic wastewater treatment processes, namely: (i) a tertiary activated sludge plant ; (ii) an upflow sludge blanket anaerobic reactor (UASB); and (iii) a high-rate stabilization pond.


2015 ◽  
Vol 10 (1) ◽  
pp. 133-142 ◽  
Author(s):  
H.-B. Ding ◽  
M. Doyle ◽  
A. Erdogan ◽  
R. Wikramanayake ◽  
P. Gallagher

This paper presents two types of dissolved air flotation application together with biosorption (the ‘Captivator® system’) as primary treatments. In the first instance, the Captivator® system is the sole primary treatment for a new plant installation and helps to gain 65% more biogas while requiring only 44% of aeration for COD oxidation, compared to a conventional process with a primary clarifier. In the second application, the Captivator® system is used to enhance the existing primary treatment for plant capacity expansion. With digested anaerobic sludge recycled as an additional adsorbent, the Captivator® system in the second application increases the biogas yield by 52% and only generates 59% excess sludge. Overall, the Captivator® system would help WWTPs to approach energy neutrality by diverting more organics for biogas production and reducing the energy requirements for aeration. In addition, it would help to reduce the installation footprint for primary treatment and save considerable capital cost by eliminating the sludge thickening process.


Sign in / Sign up

Export Citation Format

Share Document