scholarly journals Biomass production and biochemical variability of the marine microalga Dunaliella tertiolecta (Butcher) with high nutrient concentrations

Aquaculture ◽  
1986 ◽  
Vol 53 (3-4) ◽  
pp. 187-199 ◽  
Author(s):  
J. Fabregas ◽  
C. Herrero ◽  
J. Abalde ◽  
R. Liaño ◽  
B. Cabezas
1990 ◽  
Vol 22 (5) ◽  
pp. 137-144 ◽  
Author(s):  
M. T. Dokulil ◽  
G. A. Janauer

The system “Neue Donau” functions as a control system for high waters of the river Danube and is an important recreational area for many people. Water quality and trophic status of the water body is thereforeof prime importance. The high nutrient concentrations of the river Danube (P-tot 238±41µg/l, N-tot 2.53±0.78 mg/l) reach the system via groundwater seepage. Present conditions in the basin of Neue Donau are,as a result of this nutrient in-flux,eutrophic to hypertrophic. Average values during the summer period have declined from 366 µg/l total phosphorus to 78 µg/l, and from 86 µg/l chlorophyll-a tol7µg/l between the years 1985 and 1988. However, a dam which is planned in the river at Vienna will permanently raise the water level of the river thus increasing the the groundwater flow in the direction to the Neue Donau and therefore the nutrient input which will enhance trophic conditions in the impoundment. Since macrophytes play an important role in one part of the system macrophyte management together with measures along the river are some of the suggested strategies to keep the system Neue Donau at acceptable trophic conditions and good water quality.


2021 ◽  
Vol 145 ◽  
pp. 105945
Author(s):  
Clemens Herold ◽  
Tasneema Ishika ◽  
Emeka G. Nwoba ◽  
Stephan Tait ◽  
Andrew Ward ◽  
...  

2005 ◽  
Vol 83 (7) ◽  
pp. 917-928 ◽  
Author(s):  
Erica B Young ◽  
John Beardall

The marine microalga Dunaliella tertiolecta Butcher expresses a high affinity for dissolved inorganic carbon (DIC) through a carbon-concentrating mechanism (CCM), known to be influenced by CO2 availability and instantaneous light supply. However, the regulation by light and nutrient supply during growth is less understood, although N and Fe limitation impose an energy limitation by compromising the photosynthetic apparatus. Dunaliella tertiolecta was grown under steady-state conditions of limited light, N, and Fe availability, and the affinity for DIC was measured under saturating light. High affinity DIC uptake capacity was maintained by D. tertiolecta under all growth-limiting conditions, but was modulated in response to the limiting resource. Affinity of photosynthesis for DIC(k0.5) was significantly reduced in cells grown under low light, both in turbidostats and in batch culture (p ≤ 0.03), although cell-normalized Pmax was not significantly affected. In contrast, N and Fe limitation resulted in a significant reduction in cell chlorophyll, Pmax, and maximum photosystem II quantum yield (Fv/Fm), but the affinity for DIC was enhanced with increasing N or Fe stress. While the affinity for DIC improved with increasing N stress (k0.5 < 17.8 µM at µ = 0.27 d–1 versus k0.5 > 26 µM at µ ≥ 0.77 d–1), light use efficiency (α) was impaired under N limitation, suggesting a trade-off between light harvesting capacity and active DIC uptake. Stable C isotope analysis of Fe-limited cells confirmed a lower fractionation by the most Fe-limited cells, consistent with the k0.5 data and more active DIC acquisition (δ13C = –19.56 at µ = 0.27 d–1 cf. δ13C = –26.28 at µ = 0.77 d–1). Assessment of affinity for DIC using k0.5 was supported by the close fit of P versus DIC curves to Michaelis–Menten kinetics; with the high DIC affinity of D. tertiolecta, there was poor resolution in the initial slope of the P versus DIC curve as a parameter of affinity for DIC. Enhanced DIC uptake efficiency under Fe and N limitation may relate to improved resource-use efficiency conferred by CCM activity.Key words: algae, carbon-concentrating mechanism, iron, light, nitrogen, nutrient limitation, photosynthesis.


Sign in / Sign up

Export Citation Format

Share Document