ammonium nitrogen
Recently Published Documents





Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 221
Paraskevi Psachoulia ◽  
Sofia-Natalia Schortsianiti ◽  
Urania Lortou ◽  
Spyros Gkelis ◽  
Christos Chatzidoukas ◽  

Four microalgae species were evaluated for their bioremediation capacity of anaerobic digestion effluent (ADE) rich in ammonium nitrogen, derived from a biogas plant. Chlorella vulgaris, Chlorella sorokiniana, Desmodesmus communis and Stichococcus sp. were examined for their nutrient assimilation efficiency, biomass production and composition through their cultivation in 3.7% v/v ADE; their performance was compared with standard cultivation media which consisted in different nitrogen sources, i.e., BG-11NO3 and BG-11ΝΗ4 where N-NO3 was replaced by N-NH4. The results justified ammonium as the most preferable source of nitrogen for microalgae growth. Although Stichococcus sp. outperformed the other 3 species in N-NH4 removal efficiency both in BG-11NH4 and in 3.7% ADE (reaching up to 90.79% and 69.69% respectively), it exhibited a moderate biomass production when it was cultivated in diluted ADE corresponding to 0.59 g/L, compared to 0.89 g/L recorded by C. vulgaris and 0.7 g/L by C. sorokiniana and D. communis. Phosphorus contained in the effluent and in the control media was successfully consumed by all of the species, although its removal rate was found to be affected by the type of nitrogen source used and the particular microalgae species. The use of ADE as cultivation medium resulted in a significant increase in carbohydrates content in all investigated species.

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 209
Jingchen Yin ◽  
Haitao Chen ◽  
Yuqiu Wang ◽  
Lifeng Guo ◽  
Guoguang Li ◽  

Ammonium nitrogen (NH4+-N), which naturally arises from the decomposition of organic substances through ammonification, has a tremendous influence on local water quality. Therefore, it is vital for water quality protection to assess the amount, sources, and streamflow transport of NH4+-N. SPAtially Referenced Regressions on Watershed attributes (SPARROW), which is a hybrid empirical and mechanistic modeling technique based on a regression approach, can be used to conduct studies of different spatial scales on nutrient streamflow transport. In this paper, the load and delivery of NH4+-N in Poyang Lake Basin (PLB) and Haihe River Basin (HRB) were estimated using SPARROW. In PLB, NH4+-N load streamflow transport originating from point sources and farmland accounted for 41.83% and 32.84%, respectively. In HRB, NH4+-N load streamflow transport originating from residential land and farmland accounted for 40.16% and 36.75%, respectively. Hence, the following measures should be taken: In PLB, it is important to enhance the management of the point sources, such as municipal and industrial wastewater. In HRB, feasible measures include controlling the domestic pollution and reducing the usage of chemical fertilizers. In addition, increasing the vegetation coverage of both basins may be beneficial to their nutrient management. The SPARROW models built for PLB and HRB can serve as references for future uses for different basins with various conditions, extending this model’s scope and adaptability.

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 85
Barbara Wodecka ◽  
Jakub Drewnowski ◽  
Anita Białek ◽  
Ewa Łazuka ◽  
Joanna Szulżyk-Cieplak

One of the important factors determining the biochemical processes in bioreactors is the quality of the wastewater inflow to the wastewater treatment plant (WWTP). Information on the quality of wastewater, sufficiently in advance, makes it possible to properly select bioreactor settings to obtain optimal process conditions. This paper presents the use of classification models to predict the variability of wastewater quality at the inflow to wastewater treatment plants, the values of which depend only on the amount of inflowing wastewater. The methodology of an expert system to predict selected indicators of wastewater quality at the inflow to the treatment plant (biochemical oxygen demand, chemical oxygen demand, total suspended solids, and ammonium nitrogen) on the example of a selected WWTP—Sitkówka Nowiny, was presented. In the considered system concept, a division of the values of measured wastewater quality indices into lower (reduced values of indicators in relation to average), average (typical and most common values), and upper (increased values) were adopted. On the basis of the calculations performed, it was found that the values of the selected wastewater quality indicators can be identified with sufficient accuracy by means of the determined statistical models based on the support vector machines and boosted trees methods.

2021 ◽  
Vol 215 (12) ◽  
pp. 50-58
Al'bina Luneva

Abstract. The purpose of the research. Screening of collection strains of microorganisms with enzymatic properties to accelerate the processes of microbial biodegradation of bird droppings. Research methods. The proteolytic activity of the grown cultures was studied according to GOST 20264.2-88, the total microbial number in the chicken droppings (CFU/ml) was analyzed, and the ammonium nitrogen was determined. Research results. As a result of the experiments, it was found that the highest proteolytic activity was demonstrated by the strain Pseudomonas putida 90 biovar A (171), which amounted to 74.6 units/g. When analyzing the effect of the studied collection strains on the decomposition processes of droppings, it was revealed that the largest number of microbial cells in bird droppings was achieved using Pseudomonas putida 90 biovar A (171), which was 104 CFU/ml at the beginning of the researches, and was the maximum and amounted to 1011 CFU/ml by the 15th day. The content of ammonium nitrogen in droppings treated with this culture decreased from 340 mg/l from the beginning of the experiment to 174 (15th day) and 169 mg/l (20th day) and it was the best indicator. When selecting the dose and concentration of the strain-producer Pseudomonas putida 90 biovar A (171) under introduction to bird droppings, it was found that to accelerate the process of biodegradation of bird droppings, the optimal dose for applying the studied culture is 4.0 % of organic waste mass with preliminary dilution by 2 times with water. At the same time, the optimal time of droppings keeping and the studied culture is 15 days. Scientific novelty. It was established for the first time that the treatment of chicken manure with the collection strain Pseudomonas putida 90 biovar A (171) accelerates the process of its microbial transformation.

2021 ◽  
Han Wang ◽  
Qing Wu ◽  
Yuping Han

Abstract The incubation experiments focused on altering concentration gradients of nitrogen between sediment and overlying water to examine the diffusion flux of ammonium-nitrogen (NH4+) and nitrate-nitrogen (NO3-) at sediment-water interface. In this study, the diffusion flux can be estimated based on calculating the average of the net change rate of nutrient concentrations in the overlying water. For the incubation experiment of different TN concentrations in the sediment, the results showed that the diffusion flux of ammonia at sediment-water interface is -52.57~84.57 mg·m-2·d-1, and for nitrate diffusion flux, the changing range during the incubation experiment is -110.13~143.25 mg·m-2·d-1. For the incubation experiment of different nitrogen concentrations in the overlying water, the results of NH4+-N diffusion flux in L, M, H treatment were 3.37, -4.94, -3.84 mg·m-2·d-1, respectively. And the average diffusion flux of nitrate in L (0 mg NO3--N, 0 mg NH4+-N), M (0.5 mg NO3--N, 1.5 mg NH4+-N) and H (1 mg NO3--N, 2.5 mg NH4+-N) treatment were 12.30, 10.39 and 7.11 mg·m-2·d-1. Results highlighted that concentrations gradient of nutrients were indeed an important factor affecting the diffusion flux at sediment-water interface. In addition, the diffusion of nutrients at sediment-water interface in aquatic ecosystem is not only controlled by concentration gradients, some other factors such as incoming water, hydrodynamics, dissolved oxygen content, sediment structure, biological disturbance, horizontal migration and diffusion of nutrients and turbulent diffusion caused by wind and wave, are equally important.

2021 ◽  
Vol 6 (10 (114)) ◽  
pp. 6-15
Sergii Shamanskyi ◽  
Sergii Boichenko ◽  
Viktoria Khrutba ◽  
Olena Barabash ◽  
Iryna Shkilniuk ◽  

Conventional process schemes of municipal sewage water treatment, advantages, and disadvantages of the methods applied when removing biogenic elements were considered. It was shown that the existing shortcomings cause additional explicit costs and difficulties when disposing of the resulting waste. Low efficiency of the removal processes themselves causing residual concentrations of biogenic elements in the treated sewage water was also shown. A process scheme for treating municipal sewage water was proposed. It includes the use of a photobioreactor of a proposed design for the removal of biogenic elements due to the metabolism of microalgae. It was experimentally shown that the use of Euglena gracilis strain for removal of phosphates in initial concentrations of 4, 7, and 14 mg/dm3 from sewage water is the most efficient way. It makes it possible to reduce these concentrations to residual 0…0.55 mg/dm3 in four days. A 3.75…5.58 times increment of microalgae biomass during this period was also shown. A mathematical model was constructed for calculating the time of staying the sewage water and microalgae mixture in a photobioreactor to achieve the required degree of removal of biogenic elements. Based on the proposed model and experimental studies, the required time of staying in the rector working area was calculated. It was shown that with the use of Euglena gracilis strain but without removal of biogenic elements at previous purification stages (process schemes including only mechanical purification), the time of mixture staying in the working zone was 37.81 hrs. With partial removal of biogenic elements at the stage of biological treatment (0.55 mg/dm3 total nitrogen, 0.91 mg/dm3 ammonium nitrogen, 0.44 mg/dm3 phosphates), this time was reduced to 26.66 hrs. It was found that the use of Euglena gracilis strain instead of Chlorella vulgaris (FC-16) in the removal of phosphates results in a 2-time increase in the process efficiency and a 50 % decrease in time of mixture staying in the working zone. Recommendations for calculating geometric parameters of photobioreactors of the proposed design were given for use in the process schemes

2021 ◽  
Vol 12 ◽  
Tao Chen ◽  
Ruiwen Hu ◽  
Zhongyi Zheng ◽  
Jiayi Yang ◽  
Huan Fan ◽  

The shortage of land resources restricts the sustainable development of agricultural production. Multiple cropping has been widely used in Southern China, but whether the continuous planting will cause a decline in soil quality and crop yield is unclear. To test whether multiple cropping could increase grain yield, we investigated the farmlands with different cultivation years (10–20 years, 20–40 years, and >40 years). Results showed that tobacco-rice multiple cropping rotation significantly increased soil pH, nitrogen nutrient content, and grain yield, and it increased the richness of the bacterial community. The farmland with 20–40 years of cultivation has the highest soil organic carbon (SOC), ammonium nitrogen, and grain yield, but there is no significant difference in the diversity and structure of the bacterial community in farmlands with different cultivation years. The molecular ecological network indicated that the stability of the bacterial community decreased across the cultivation years, which may result in a decline of farmland yields in multiple cropping system> 40 years. The Acidobacteria members as the keystone taxa (Zi ≥ 2.5 or Pi ≥ 0.62) appeared in the tobacco-rice multiple cropping rotation farmlands, and the highest abundance of Acidobacteria was found in the farmland with the highest SOC and ammonium nitrogen content, suggesting Acidobacteria Gp4, GP7, GP12, and GP17 are important taxa involved in the soil carbon and nitrogen cycle. Therefore, in this study, the multiple cropping systems for 20 years will not reduce the crop production potential, but they cannot last for more than 40 years. This study provides insights for ensuring soil quality and enhancing sustainable agricultural production capacity.

2021 ◽  
Vol 3 (2) ◽  
pp. 153-162
Gina Alina Catrina ◽  
Lidia Kim ◽  
Agnes Serbanescu ◽  
Georgiana Cernica ◽  

The study aimed to develop some methods for the compositional characterization of biodegradable waste with relevance to the composting process at the laboratory level. For testing, four waste fractions were selected, such as waste-based on dehydrated sludge, waste from parks (leaves, branches), market waste (mixture of vegetable and fruit), and cardboard waste. For metals and phosphorus, several microwave digestion methods were applied. The ammonium nitrogen content (NH4-N) was determined using a number of extraction procedures (water, CaCl2, and KCl). Three certified reference materials were used for testing the validity of the results. Recovery percentages higher than 90% were obtained. The developed and validated methods are suitable for biodegradable waste characterization used in composting processes.

Delvio Sandri ◽  
Ana Paula Reis

The objective is to assess the initial performance of a constructed wetland system and the development of the macrophyte species cattail(Typha spp.) (CWt), piripiri (Cyperus giganteus) (CWp), and white garland lily (Hedychium coronarium Koehne) (CWl) and an suncultivated (UNc) on the treatment of sewage from toilets and from a restaurant. Changes in hydrogen potential, electrical conductivity, total suspended solids, total solids, biochemical oxygen demand, chemical oxygen demand, turbidity, nitrate, ammonium nitrogen, total phosphate, hydraulic retention time (HRT), and potential evapotranspiration (PET) and the development and adaptation of macrophytes were measured. The surface area of ??each constructed wetland (CW) had a surface area of 16.25 m2 and average volume treated of 0.40 m3 d-1, with continuous variable horizontal subsurface flow equally fed with sewage previously treated in three septic tanks in series, with an individual useful volume of 5.100 L. The PET in CWt, CWp and CWl was higher than that of UNc. The highest pH values were obtained in the effluent of CWp, CWt, and CWl. The use of macrophytes did not influence the EC, TS, BOD5,20, COD, and nitrate were lower and ammonium nitrogen and total phosphate were higher in the effluent of CWs and UNc in relation to the influent. The efficiency indexes that showed a very strong Pearson correlations (> 90%) were pH correlated with N-NH4+, turbidity correlated with COD, TS correlated with EC, and BOD5,20 and COD correlated with NO3-.Piripiri and cattails showed the best development of plants in the second half of CW.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12601
Xuejiang Zhang ◽  
Heyun Wang ◽  
Yawei Que ◽  
Dazhao Yu ◽  
Hua Wang

Wheat root rot disease due to soil-borne fungal pathogens leads to tremendous yield losses worth billions of dollars worldwide every year. It is very important to study the relationship between rhizosphere soil fungal diversity and wheat roots to understand the occurrence and development of wheat root rot disease. A significant difference in fungal diversity was observed in the rhizosphere soil of healthy and diseased wheat roots in the heading stage, but the trend was the opposite in the filling stage. The abundance of most genera with high richness decreased significantly from the heading to the filling stage in the diseased groups; the richness of approximately one-third of all genera remained unchanged, and only a few low-richness genera, such as Fusarium and Ceratobasidium, had a very significant increase from the heading to the filling stage. In the healthy groups, the abundance of most genera increased significantly from the heading to filling stage; the abundance of some genera did not change markedly, or the abundance of very few genera increased significantly. Physical and chemical soil indicators showed that low soil pH and density, increases in ammonium nitrogen, nitrate nitrogen and total nitrogen contributed to the occurrence of wheat root rot disease. Our results revealed that in the early stages of disease, highly diverse rhizosphere soil fungi and a complex community structure can easily cause wheat root rot disease. The existence of pathogenic fungi is a necessary condition for wheat root rot disease, but the richness of pathogenic fungi is not necessarily important. The increases in ammonium nitrogen, nitrate nitrogen and total nitrogen contributed to the occurrence of wheat root rot disease. Low soil pH and soil density are beneficial to the occurrence of wheat root rot disease.

Sign in / Sign up

Export Citation Format

Share Document