Glycosaminoglycan and glycoprotein synthesis by cranial neural crest cells in vitro

1977 ◽  
Vol 6 (2) ◽  
pp. 119-132 ◽  
Author(s):  
Judith H. Greenberg ◽  
Robert M. Pratt
Development ◽  
2001 ◽  
Vol 128 (11) ◽  
pp. 2143-2152 ◽  
Author(s):  
Sanjukta Sarkar ◽  
Anita Petiot ◽  
Andrew Copp ◽  
Patrizia Ferretti ◽  
Peter Thorogood

The cranial neural crest gives rise to most of the skeletal tissues of the skull. Matrix-mediated tissue interactions have been implicated in the skeletogenic differentiation of crest cells, but little is known of the role that growth factors might play in this process. The discovery that mutations in fibroblast growth factor receptors (FGFRs) cause the major craniosynostosis syndromes implicates FGF-mediated signalling in the skeletogenic differentiation of the cranial neural crest. We now show that, in vitro, mesencephalic neural crest cells respond to exogenous FGF2 in a dose-dependent manner, with 0.1 and 1 ng/ml causing enhanced proliferation, and 10 ng/ml inducing cartilage differentiation. In longer-term cultures, both endochondral and membrane bone are formed. FGFR1, FGFR2 and FGFR3 are all detectable by immunohistochemistry in the mesencephalic region, with particularly intense expression at the apices of the neural folds from which the neural crest arises. FGFRs are also expressed by subpopulations of neural crest cells in culture. Collectively, these findings suggest that FGFs are involved in the skeletogenic differentiation of the cranial neural crest.


2019 ◽  
Author(s):  
Alok Javali ◽  
Vairavan Laxmanan ◽  
Dasaradhi Palakodeti ◽  
Ramkumar Sambasivan

AbstractVertebrate cranial neural crest cells (CNCC) are multipotent. Proximal to the source CNCC form the cranial ganglia. Distally, in the pharyngeal arches, they give rise to the craniofacial skeleton and connective tissues. Fate choices are made as CNCC pattern into distinct destination compartments. In spite of this importance, the mechanism patterning CNCC is poorly defined. Here, we report that a novel β-catenin-controlled switch in the cell arrangement is critical in patterning CNCC. In mouse embryos, at the first pharyngeal arch axial level, membrane β-catenin levels correlate with the extent of cell-cell adhesion and thus, with a collective or a dispersed state of CNCC. Using in vitro human neural crest model and chemical modulators of β-catenin levels, we show a requirement for down-modulating β-catenin for the collective-to-dispersed switch. Similarly, in β-catenin gain of function mutant mouse embryos, CNCC fail to disperse, which may underlie their failure to populate first pharyngeal arch. Thus, we show that β-catenin-mediated regulation of CNCC tissue architecture, a previously underappreciated mechanism, underlies the patterning of CNCC into fate-specific compartments.Summary statementThe report shows a crucial step in cranial neural crest patterning. Neural crest cells invading the pharyngeal arches transition from a collective to a dispersed state. This transition in cell arrangement is dependent on membrane β-catenin levels.


Sign in / Sign up

Export Citation Format

Share Document