Stability analysis of anisotropic laminated composite plates by finite strip method

1993 ◽  
Vol 49 (6) ◽  
pp. 963-967 ◽  
Author(s):  
M.S. Cheung ◽  
G. Akhras ◽  
W. Li
2020 ◽  
Vol 12 (09) ◽  
pp. 2050106
Author(s):  
Mohammad Sekhavatjou ◽  
Mojtaba Azhari ◽  
Saeid Sarrami-Foroushani

In this study, a bubble complex finite strip method (BCFSM) with the higher-order zigzag theory is formulated for mechanical buckling and free vibration analysis of laminated composite plates, including cross-ply and angle-ply laminates. Few studies have been done to obtain the analytical solutions for clamped and free boundary conditions in the longitudinal and transverse edges. Therefore, this study, for the first time, investigates the effects of various boundary conditions on the stability and vibration results of laminated composite plates subjected to axial or pure shear forces with the use of higher-order zigzag theory and BCFSM. Following this, both the interlaminar continuity conditions of transverse shear stresses and the shear-free surface conditions are satisfied by applying a cubic displacement and a zigzag linear varying displacement with the same number of unknowns as the first-order shear deformation theories. Moreover, the effects of width-to-thickness ratio, fiber orientation, number of modes, different dimensional ratios of the plate, and finally, the number of layers are investigated through numerical examples. The bubble shape functions are exploited in the transverse direction to improve the convergence of the method. Finally, the shearing and axial interaction diagrams of composite laminated plates are presented for various types of boundary conditions.


2010 ◽  
Vol 123-125 ◽  
pp. 201-204 ◽  
Author(s):  
Seyyed Amir Mahdi Ghannadpour ◽  
Hamid Reza Ovesy

This paper presents the theoretical developments of an exact finite strip for the buckling and initial post-buckling analyses of symmetrically laminated composite plates. The so-called exact finite strip is developed based on the concept that it is effectively a plate. The present method, which is designated by the name Full-analytical Finite Strip Method in this paper, provides an efficient and extremely accurate buckling solution. In the development process, the Von-Karman’s equilibrium equation is solved exactly to obtain the buckling loads and the corresponding form of out-of-plane buckling deflection modes. The investigation of thin flat plate buckling behavior is then extended to an initial post-buckling study with the assumption that the deflected form immediately after the buckling is the same as that obtained for the buckling. The post-buckling study is effectively a single-term analysis, which is attempted by utilizing the so-called semi-energy method. In this method, the Von-Karman’s compatibility equation governing the behavior of symmetrically laminated composite plates is used together with a consideration of the total strain energy of the plate. Through the solution of the compatibility equation, the in-plane displacement functions are developed in terms of the unknown coefficient in the assumed out-of-plane deflection function. These in-plane and out-of-plane deflected functions are then substituted in the total strain energy expressions and the theorem of minimum total potential energy is applied to solve for the unknown coefficient. The developed method is subsequently applied to analyze the initial post-buckling behavior of some representative thin flat plates for which the results are also obtained through the application of a semi-analytical finite strip method. Through the comparison of the results and the appropriate discussion, the knowledge of the level of capability of the developed method is significantly promoted.


Sign in / Sign up

Export Citation Format

Share Document