Large amplitude free vibration analysis of cross-ply composite and sandwich laminates with a refined theory and finite elements

1994 ◽  
Vol 50 (1) ◽  
pp. 123-134 ◽  
Author(s):  
T. Kant ◽  
J.R. Kommineni
Author(s):  
Anirban Mitra ◽  
Prasanta Sahoo ◽  
Kashinath Saha

Large amplitude forced vibration behaviour of stiffened plates under harmonic excitation is studied numerically incorporating the effect of geometric non-linearity. The forced vibration analysis is carried out in an indirect way in which the dynamic system is assumed to satisfy the force equilibrium condition at peak excitation amplitude. Large amplitude free vibration analysis of the same system is carried out separately to determine the backbone curves. The mathematical formulation is based on energy principles and the set of governing equations for both forced and free vibration problems derived using Hamilton’s principle. Appropriate sets of coordinate functions are formed by following the two dimensional Gram-Schmidt orthogonalization procedure to satisfy the corresponding boundary conditions of the plate. The problem is solved by employing an iterative direct substitution method with an appropriate relaxation technique and when the system becomes computationally stiff, Broyden’s method is used. The results are furnished as frequency response curves along with the backbone curve in the dimensionless amplitude-frequency plane. Three dimensional operational deflection shape (ODS) plots and contour plots are provided in a few cases.


2019 ◽  
Vol 3 (4) ◽  
pp. 104 ◽  
Author(s):  
Vu Van Tham ◽  
Tran Huu Quoc ◽  
Tran Minh Tu

In this paper, a new four-variable refined shell theory is developed for free vibration analysis of multi-layered functionally graded carbon nanotube-reinforced composite (FG-CNTRC) doubly curved shallow shell panels. The theory has only four unknowns and satisfies zero stress conditions at the free surfaces without correction factor. Five different types of carbon nanotube (CNTs) distribution through the thickness of each FG-CNT layer are considered. Governing equations of simply supported doubly curved FG-CNTRC panels are derived from Hamilton’s principle. The resultant eigenvalue system is solved to obtain the frequencies and mode shapes of the anti-symmetric cross-ply laminated panels by using the Navier solution. The numerical results in the comparison examples have proved the accuracy and efficiency of the developed model. Detailed parametric studies have been carried out to reveal the influences of CNTs volume fraction, CNTs distribution, CNTs orientation, dimension ratios and curvature on the free vibration responses of the doubly curved laminated FG-CNTRC panels.


Sign in / Sign up

Export Citation Format

Share Document