The interaction of yellow rust (Puccinia striiformis) with winter wheat cultivars showing adult plant resistance: macroscopic and microscopic events associated with the resistant reaction

1977 ◽  
Vol 10 (3) ◽  
pp. 257-274 ◽  
Author(s):  
D.J. Mares ◽  
S. Cousen
Euphytica ◽  
2008 ◽  
Vol 163 (2) ◽  
pp. 283-301 ◽  
Author(s):  
Amin K. Pathan ◽  
Colin R. Wellings ◽  
Harbans S. Bariana ◽  
Robert F. Park

Plant Disease ◽  
2020 ◽  
Vol 104 (5) ◽  
pp. 1455-1464 ◽  
Author(s):  
Chan Yuan ◽  
Ravi P. Singh ◽  
Demei Liu ◽  
Mandeep S. Randhawa ◽  
Julio Huerta-Espino ◽  
...  

Leaf (brown) rust (LR) and stripe (yellow) rust (YR), caused by Puccinia triticina and P. striiformis f. sp. tritici, respectively, significantly reduce wheat production worldwide. Disease-resistant wheat varieties offer farmers one of the most effective ways to manage these diseases. The common wheat (Triticum aestivum L.) Arableu#1, developed by the International Maize and Wheat Improvement Center and released as Deka in Ethiopia, shows susceptibility to both LR and YR at the seedling stage but a high level of adult plant resistance (APR) to the diseases in the field. We used 142 F5 recombinant inbred lines (RILs) derived from Apav#1 × Arableu#1 to identify quantitative trait loci (QTLs) for APR to LR and YR. A total of 4,298 genotyping-by-sequencing markers were used to construct a genetic linkage map. The study identified four LR resistance QTLs and six YR resistance QTLs in the population. Among these, QLr.cim-1BL.1/QYr.cim-1BL.1 was located in the same location as Lr46/Yr29, a known pleiotropic resistance gene. QLr.cim-1BL.2 and QYr.cim-1BL.2 were also located on wheat chromosome 1BL at 37 cM from Lr46/Yr29 and may represent a new segment for pleiotropic resistance to both rusts. QLr.cim-7BL is likely Lr68 given its association with the tightly linked molecular marker cs7BLNLRR. In addition, QLr.cim-3DS, QYr.cim-2AL, QYr.cim-4BL, QYr.cim-5AL, and QYr.cim-7DS are probably new resistance loci based on comparisons with published QTLs for resistance to LR and YR. Our results showed the diversity of minor resistance QTLs in Arableu#1 and their role in conferring near-immune levels of APR to both LR and YR, when combined with the pleiotropic APR gene Lr46/Yr29.


2011 ◽  
Vol 101 (10) ◽  
pp. 1209-1216 ◽  
Author(s):  
P. Risser ◽  
E. Ebmeyer ◽  
V. Korzun ◽  
L. Hartl ◽  
T. Miedaner

Septoria tritici blotch (STB) is one of the most important leaf spot diseases in wheat worldwide. The goal of this study was to detect chromosomal regions for adult-plant resistance in large winter wheat populations to STB. Inoculation by two isolates with virulence to Stb6 and Stb15, both present in the parents, was performed and STB severity was visually scored plotwise as percent coverage of flag leaves with pycnidia-bearing lesions. ‘Florett’/‘Biscay’ and ‘Tuareg’/‘Biscay’, each comprising a cross of a resistant and a susceptible cultivar, with population sizes of 316 and 269 F7:8 recombinant inbred lines, respectively, were phenotyped across four and five environments and mapped with amplified fragment length polymorphism, diversity array technology, and simple sequence repeat markers covering polymorphic regions of ≈1,340 centimorgans. Phenotypic data revealed significant (P < 0.01) genotypic differentiation for STB, heading date, and plant height. Entry-mean heritabilities (h2) for STB were 0.73 for ‘Florett’/‘Biscay’ and 0.38 for ‘Tuareg’/‘Biscay’. All correlations between STB and heading date as well as between STB and plant height were low (r = –0.13 to –0.20). In quantitative trait loci (QTL) analysis, nine and six QTL were found for STB ratings explaining, together, 55 and 51% of phenotypic variation in ‘Florett’/‘Biscay’ and ‘Tuareg’/‘Biscay’, respectively. Genotype–environment and QTL–environment interactions had a large impact. Two major QTL were detected consistently across environments on chromosomes 3B and 6D from ‘Florett’ and chromosomes 4B and 6B from ‘Tuareg’, each explaining 12 to 17% of normalized adjusted phenotypic variance. These results indicate that adult-plant resistance to STB in both mapping populations was of a quantitative nature.


Sign in / Sign up

Export Citation Format

Share Document