Heavy metals in Posidonia oceanica and Paracentrotus lividus from seagrass beds of the north-western Mediterranean

1995 ◽  
Vol 171 (1-3) ◽  
pp. 95-99 ◽  
Author(s):  
Michel Warnau ◽  
Gilles Ledent ◽  
Ali Temara ◽  
Jean-Marie Bouquegneau ◽  
Michel Jangoux ◽  
...  
Author(s):  
Mourad Guettaf ◽  
Gustavo A. San Martin ◽  
Patrice Francour

The spawning of Paracentrotus lividus has been determined on the basis of the annual gonad index cycle at three sites in the Algiers area presenting low, intermediate and strong hydrodynamism. Three biotopes (Posidonia oceanica beds, rocky substrate with photophilous algae and overgrazed rocky substrate) and two depths (1–3 m and 6–10 m) were considered at these sites, the sex-ratio was always strongly in favour of females (2:1 to 3:1). In all sites but one, there were marked differences in the gonad index and the spawning period between sites; the gonad index reached its maximum value at the site with the weakest hydrodynamism, and the minimum value at the site with the strongest hydrodynamism. Spawning took place in April–May and August–September at the site with the weakest hydrodynamism, in April–June and October–December at the site with intermediate hydrodynamism and only in winter at the site with maximum hydrodynamism. The coexistence, on regional scale, of these reproductive cycles might enable Paracentrotus lividus to compensate the mortality during planktonic larval phase by the fact that spawning of this sea urchin occurred in all seasons.


2012 ◽  
Vol 92 (8) ◽  
pp. 1799-1808 ◽  
Author(s):  
Alexandre Gannier ◽  
Estelle Petiau ◽  
Violaine Dulau ◽  
Luke Rendell

Oceanic odontocetes rely on echolocation to forage on pelagic or benthic prey, but their feeding ecology is difficult to study. We studied sperm whale foraging dives during summer in the north-western Mediterranean, using visual and passive acoustic observations. Clicking and creaking activities were recorded during dives of focal whales, at distances <3000 m using a towed hydrophone and DAT recorder. A total of 52 sperm whales were recorded over at least one full dive cycle. Data were obtained for 156 complete dives in total, including sequences of up to nine consecutive dives. Various dive and environmental variables were entered in multiple linear regression and principal components analysis, as well as estimated mass of whales. Creak rate was 0.80 creak/minute on average, with moderate variance. Bigger whales tended to dive longer at greater depths (as suggested by ascent durations), and emitted more creaks during a dive: 20.2 creaks/dive on average for individuals <24 tons, compared to 25.6 creaks/dive for animals >24 tons of estimated mass. For individual whales, creak rates did not vary significantly with size (range 0.78–0.80 creak/minute), but decreased with time of the day, and increased for shorter foraging phases. For different dives, higher creak rates were also observed earlier in the day, and linked to shorter foraging phases and surface durations. Although the exact significance of creak emissions (i.e. foraging attempt or prey capture) is not precisely determined, creak rates may be reliably used to quantify sperm whale foraging when single animal dives can be followed acoustically.


2010 ◽  
Vol 7 (3) ◽  
pp. 809-826 ◽  
Author(s):  
E. Ternon ◽  
C. Guieu ◽  
M.-D. Loÿe-Pilot ◽  
N. Leblond ◽  
E. Bosc ◽  
...  

Abstract. Simultaneous measurements of atmospheric deposition and of sinking particles at 200 and 1000 m depth, were performed in the Ligurian Sea (North-Western Mediterranean) between 2003 and 2007, along with phytoplanktonic activity derived from satellite images. Atmospheric deposition of Saharan dust particles was very irregular and confirmed the importance of sporadic high magnitude events over the annual average (11.4 g m−2 yr−1 for the 4 years). The average marine total mass flux was 31 g m−2 yr−1, the larger fraction being the lithogenic one (~37%). The marine total mass flux displayed a seasonal pattern with a maximum in winter, occurring before the onset of the spring bloom. The highest POC fluxes did not occur during the spring bloom nor could they be directly related to any noticeable increase in the surface phytoplanktonic biomass. Over the 4 years of the study, the strongest POC fluxes were concomitant with large increases of the lithogenic marine flux, which had originated from either recent Saharan fallout events (February 2004 and August 2005), from "old" Saharan dust "stored" in the upper water column layer (March 2003 and February 2005), or alternatively from lithogenic material originating from Ligurian riverine flooding (December 2003, Arno, Roya and Var rivers). Those associated export fluxes defined as "lithogenic events", are believed to result from a combination of forcing (winter mixing or Saharan events, in particular extreme ones), biological (zooplankton) activity, and also organic-mineral aggregation inducing a ballast effect. By fertilising the surface layer, mixed Saharan dust events were shown to be able to induce "lithogenic events" during the stratification period. These events would be more efficient in transferring POC to the deeper layers than the spring bloom itself. The extreme Saharan event of February 2004 exported ~45% of the total annual POC, compared to an average of ~25% for the bloom period. This emphasises the role played by these "lithogenic events", and in particular those that are induced by the more extreme Saharan events, in the carbon export efficiency in the North-western Mediterranean Sea.


Sign in / Sign up

Export Citation Format

Share Document