western mediterranean sea
Recently Published Documents


TOTAL DOCUMENTS

971
(FIVE YEARS 214)

H-INDEX

57
(FIVE YEARS 6)

Limnetica ◽  
2022 ◽  
Vol 41 (1) ◽  
pp. 101-106
Author(s):  
Adrián Guerrero-Gómez ◽  
Antonio Zamora-López ◽  
Antonio Guillén-Beltrán ◽  
José M. Zamora-Marín ◽  
Ana Sánchez-Pérez ◽  
...  

2021 ◽  
Vol 13 (12) ◽  
pp. 5915-5949
Author(s):  
Malek Belgacem ◽  
Katrin Schroeder ◽  
Alexander Barth ◽  
Charles Troupin ◽  
Bruno Pavoni ◽  
...  

Abstract. The Western MEDiterranean Sea BioGeochemical Climatology (BGC-WMED, https://doi.org/10.1594/PANGAEA.930447) (Belgacem et al., 2021) presented here is a product derived from quality-controlled in situ observations. Annual mean gridded nutrient fields for the period 1981–2017 and its sub-periods 1981–2004 and 2005–2017 on a horizontal 1/4∘ × 1/4∘ grid have been produced. The biogeochemical climatology is built on 19 depth levels and for the dissolved inorganic nutrients nitrate, phosphate and orthosilicate. To generate smooth and homogeneous interpolated fields, the method of the variational inverse model (VIM) was applied. A sensitivity analysis was carried out to assess the comparability of the data product with the observational data. The BGC-WMED was then compared to other available data products, i.e., the MedBFM biogeochemical reanalysis of the Mediterranean Sea and the World Ocean Atlas 2018 (WOA18) (its biogeochemical part). The new product reproduces common features with more detailed patterns and agrees with previous records. This suggests a good reference for the region and for the scientific community for the understanding of inorganic nutrient variability in the western Mediterranean Sea, in space and in time, but our new climatology can also be used to validate numerical simulations, making it a reference data product.


2021 ◽  
Vol 13 (24) ◽  
pp. 5151
Author(s):  
Emanuele Ciancia ◽  
Teodosio Lacava ◽  
Nicola Pergola ◽  
Vincenzo Vellucci ◽  
David Antoine ◽  
...  

Investigating the variability of phytoplankton phenology plays a key role in regions characterized by cyclonic circulation regimes or convective events, like the north-western Mediterranean Sea (NWM). The main goal of this study is to assess the potential of the robust satellite techniques (RST) in identifying anomalous phytoplankton blooms in the NWM by using 9 years (2008–2017) of multi-sensor chlorophyll-a (chl-a) products from the CMEMS and OC-CCI datasets. Further application of the RST approach on a corresponding time-series of in situ chl-a measurements acquired at the BOUSSOLE site allows evaluation ofthe accuracy of the satellite-based change detection indices and selecting the best indicator. The OC-CCI derived chl-a anomaly index shows the best performances when compared to in situ data (R2 and RMSE of 0.75 and 0.48, respectively). Thus, it has been used to characterize an anomalous chl-a bloom that occurred in March 2012 at regional scale. Results show positive chl-a anomalies between the BOUSSOLE site and the Center of Convection Zone (CCZ) as a possible consequence of an intense convection episode that occurred in February 2012.


2021 ◽  
Vol 18 (24) ◽  
pp. 6455-6477
Author(s):  
Roxane Tzortzis ◽  
Andrea M. Doglioli ◽  
Stéphanie Barrillon ◽  
Anne A. Petrenko ◽  
Francesco d'Ovidio ◽  
...  

Abstract. Model simulations and remote sensing observations show that ocean dynamics at fine scales (1–100 km in space, day–weeks in time) strongly influence the distribution of phytoplankton. However, only a few in situ-based studies at fine scales have been performed, and most of them concern western boundary currents which may not be representative of less energetic regions. The PROTEVSMED-SWOT cruise took place in the moderately energetic waters of the western Mediterranean Sea (WMS), in the region south of the Balearic Islands. Taking advantage of near-real-time satellite information, we defined a sampling strategy in order to cross a frontal zone separating different water masses. Multi-parametric in situ sensors mounted on the research vessel, on a towed vehicle and on an ocean glider were used to sample physical and biogeochemical variables at a high spatial resolution. Particular attention was given to adapting the sampling route in order to estimate the vertical velocities in the frontal area also. This strategy was successful in sampling quasi-synoptically an oceanic area characterized by the presence of a narrow front with an associated vertical circulation. A multiparametric statistical analysis of the collected data identifies two water masses characterized by different abundances of several phytoplankton cytometric functional groups, as well as different concentrations of chlorophyll a and O2. Here, we focus on moderately energetic fronts induced by fine-scale circulation. Moreover, we explore physical–biological coupling in an oligotrophic region. Our results show that the fronts induced by the fine-scale circulation, even if weaker than the fronts occurring in energetic and nutrient-rich boundary current systems, maintain nevertheless a strong structuring effect on the phytoplankton community by segregating different groups at the surface. Since oligotrophic and moderately energetic regions are representative of a very large part of the world ocean, our results may have global significance when extrapolated.


Abstract A four-dimensional survey by a fleet of 7 underwater gliders was used to identify pathways of subduction at the Almeria-Oran front in the western Mediterranean Sea. The combined glider fleet covered nearly 9000 km over ground while doing over 2500 dives to as deep as 700 m. The gliders had sensors to measure temperature, salinity, velocity, chlorophyll fluorescence and acoustic backscatter. Data from the gliders were analyzed through objective maps that were functions of across-front distance, along-front distance, and time on vertical levels separated by 10 m. Geostrophic velocity was inferred using a variational approach, and the quasigeostrophic omega equation was solved for vertical and ageostrophic horizontal velocities. Peak downward vertical velocities were near 25 m day-1 in an event that propagated in the direction of the frontal jet. An examination of an isopycnal surface that outcropped as the front formed showed consistency between the movement of the tracers and the inferred vertical velocity. The vertical velocity tended to be downward on the dense side of the front and upward on the light side so as to flatten the front in the manner of a baroclinic instability. The resulting heat flux approached 80 W m-2 near 100 m depth with a structure that would cause restratification of the front. One glider was used to track an isotherm over a day for a direct measure of vertical velocity as large as 50 m day-1, with a net downward displacement of 15 m over the day.


Sign in / Sign up

Export Citation Format

Share Document