[59] Transport of sugar nucleotides into the lumen of vesicles derived from rat liver rough endoplasmic reticulum and golgi apparatus

Author(s):  
Mary Perez ◽  
Carlos B. Hirschberg
1979 ◽  
Vol 180 (3) ◽  
pp. 449-453 ◽  
Author(s):  
M J Smith ◽  
J B Schreiber ◽  
G Wolf

The subcellular distribution of the enzyme catalysing the conversion of retinyl phosphate and GDP-[14C]mannose into [14C]mannosyl retinyl phosphate was determined by using subcellular fractions of rat liver. Purity of fractions, as determined by marker enzymes, was 80% or better. The amount of mannosyl retinyl phosphate formed (pmol/min per mg of protein) for each fraction was: rough endoplasmic reticulum 0.48 +/- 0.09 (mean +/- S.D.); smooth membranes (consisting of 60% smooth endoplasmic reticulum and 40% Golgi apparatus), 0.18 +/- 0.03; Golgi apparatus, 0.13 +/- 0.03; and plasma membrane 0.02.


1991 ◽  
Vol 266 (7) ◽  
pp. 4322-4328 ◽  
Author(s):  
P Moreau ◽  
M Rodriguez ◽  
C Cassagne ◽  
D M Morré ◽  
D J Morré

1984 ◽  
Vol 32 (6) ◽  
pp. 649-654 ◽  
Author(s):  
M Hayashi ◽  
H Shima ◽  
K Hayashi ◽  
R L Trelstad ◽  
P K Donahoe

Mullerian Inhibiting Substance (MIS) has been localized in the Sertoli cells of the neonatal calf testis using preembedding immunoperoxidase techniques and a monoclonal antibody which almost completely blocks the biological activity of MIS. Both the peroxidase-labeled antibody method using a peroxidase-conjugated F(ab')2 fragment of IgG as a second antibody and the unlabeled antibody peroxidase-antiperoxidase (PAP) method using Fab fragments of the PAP complex were employed. With both methods, MIS was demonstrated within the cisternae of the rough endoplasmic reticulum (RER) and the Golgi apparatus. In the Golgi, MIS was concentrated in the transmost cisternae especially at their peripheral expansions. This study indicates that MIS is synthesized in the RER and transported to the Golgi apparatus, presumably for glycosidation, before secretion from Golgi derived vacuoles.


1978 ◽  
Vol 34 (1) ◽  
pp. 53-63
Author(s):  
C.J. Flickinger

The appearance of enzymic activity during the development of the Golgi apparatus was studied by cytochemical staining of renucleated amoebae. In cells enucleated for 4 days, there was a great decline in size and number of Golgi bodies, or dictyosomes. Subsequent renucleation by nuclear transplantation resulted in a regeneration of Golgi bodies. Samples of amoebae were fixed and incubated for cytochemical staining at intervals of 1, 6, or 24 h after renucleation. Enzymes selected for study were guanosine diphosphatase (GDPase), esterase, and thiamine pyrophosphatase (TPPase). All three were found in the Golgi apparatus of normal amoebae but they differed in their overall intracellular distribution. GDPase was normally present at the convex pole of the Golgi apparatus, in rough endoplasmic reticulum, and in the nuclear envelope. In amoebae renucleated for 1 h, light reaction product for GDPase was present throughout the small stacks of cisternae that represented the forming Golgi apparatus. By 6 h following the operation GDPase reaction product was concentrated at the convex pole of the Golgi apparatus. Esterase, which was distributed throughout the stacks of normal Golgi cisternae, displayed a similar distribution in the forming Golgi bodies as soon as they were visible. TPPase was normally present in the Golgi apparatus but was not found in the endoplasmic reticulum. In contrast to the other enzymes, TPPase reaction product was absent from the forming Golgi apparatus 1 and 6 h after renucleation, and did not appear in the Golgi apparatus until 24 h after operation. Thus, enzymes held in common between the rough endoplasmic reticulum and the Golgi apparatus were present in the forming Golgi apparatus as soon as it was detectable, but an enzyme cytochemically localized to the Golgi apparatus only appeared later in development of the organelle. It is suggested that Golgi membranes might be derived from the endoplasmic reticulum and thus immediately contain endoplasmic reticulum enzymes, while Golgi-specific enzymes are added later in development.


1971 ◽  
Vol 51 (3) ◽  
pp. 596-610 ◽  
Author(s):  
K. Nakagami ◽  
H. Warshawsky ◽  
C. P. Leblond

The parathyroid glands of young rats were radioautographed after a single injection of the protein precursor tyrosine-3H in the hope of identifying the sites of synthesis and migration of newly formed protein in the gland cells. The same procedure was used after injection of the glycoprotein precursor galactose-3H. As early as 2 min after intravenous injection of tyrosine-3H, the label was mainly found in the rough endoplasmic reticulum suggesting that cisternal ribosomes are sites of protein synthesis. By 5 and 10 min, much of the label had migrated from the rough endoplasmic reticulum into the Golgi apparatus. By 20 and 30 min, some label had migrated from there into secretory granules. By 45 min and 1 hr, the label content of the cell had decreased, indicating release of labeled material outside the cell. At 2 min after intravenous injection of galactose-3H, the label was mainly present in the Golgi apparatus, where presumably galactose is taken up into glycoprotein. By 10 min, some label appeared in secretion granules and by 30 min release of the material to the outside of the cell was under way. In conclusion, it is likely that the tyrosine-labeled protein material consists mainly of the parathyroid hormone. The galactose-labeled carbohydrate material would be either associated with the hormone in the cell or be part of a distinct glycoprotein which may be the one present on the outer surface of the plasma membrane (cell coat).


1970 ◽  
Vol 44 (3) ◽  
pp. 492-500 ◽  
Author(s):  
R. D. Cheetham ◽  
D. James Morré ◽  
Wayne N. Yunghans

Enzymatic activities associated with Golgi apparatus-, endoplasmic reticulum-, plasma membrane-, mitochondria-, and microbody-rich cell fractions isolated from rat liver were determined and used as a basis for estimating fraction purity. Succinic dehydrogenase and cytochrome oxidase (mitochondria) activities were low in the Golgi apparatus-rich fraction. On the basis of glucose-6-phosphatase (endoplasmic reticulum) and 5'-nucleotidase (plasma membrane) activities, the Golgi apparatus-rich fraction obtained directly from sucrose gradients was estimated to contain no more than 10% endoplasmic reticulum- and 11% plasma membrane-derived material. Total protein contribution of endoplasmic reticulum, mitochondria, plasma membrane, microbodies (uric acid oxidase), and lysosomes (acid phosphatase) to the Golgi apparatus-rich fraction was estimated to be no more than 20–30% and decreased to less than 10% with further washing. The results show that purified Golgi apparatus fractions isolated routinely may exceed 80% Golgi apparatus-derived material. Nucleoside di- and triphosphatase activities were enriched 2–3-fold in the Golgi apparatus fraction relative to the total homogenate, and of a total of more than 25 enzyme-substrate combinations reported, only thiamine pyrophosphatase showed a significantly greater enrichment.


1980 ◽  
Vol 43 (1) ◽  
pp. 269-277
Author(s):  
J.C. Richardson ◽  
A.H. Maddy

Nuclear envelopes are separated into pore-lamina and membrane sub-fractions by extraction in 2.0% Triton X-100 followed by pelleting of the pore-laminae. The polypeptides of these subfractions are then compared with those from isolated rough endoplasmic reticulum. The dispositions of individual polypeptides in the cytoplasmic surface of nuclear envelopes and rought endoplasmic reticulum were studied by lactoperoxidase-catalysed iodination. These studies show that although the nuclear membranes exhibit several homologies with the Triton-soluble polypeptides of the rough endoplasmic reticulum the relative proportion of individual polypeptides within the two systems are very largely different. The cytoplasmic surfaces of the 2 membrane systems show only 2 obvious homologies at 105 000 and 15 000 mol. wt and the overall impression is that, at least in rat liver, the outer nuclear membrane is very substantially differentiated from rough endoplasmic reticulum. It is concluded that the nuclear membranes may not be regarded as a mere continuum of the endoplasmic reticulum, but should be seen as a highly specialized membrane system in their own right.


Sign in / Sign up

Export Citation Format

Share Document