Transcriptional elements as components of eukaryotic origins of DNA replication

Cell ◽  
1988 ◽  
Vol 52 (5) ◽  
pp. 635-638 ◽  
Author(s):  
Melvin L. DePamphilis
1994 ◽  
Vol 14 (4) ◽  
pp. 2516-2524
Author(s):  
S B Haase ◽  
S S Heinzel ◽  
M P Calos

This study addresses the effect of transcription on replication, using a system based on autonomously replicating plasmids in human cells. We added transcriptional elements from the human cytomegalovirus promoter/enhancer and the human beta-actin promoter to autonomously replicating plasmids based on human sequences and found that the transcriptional elements inhibited plasmid replication. Furthermore, conditional inhibition of plasmid replication was demonstrated by using a tetracycline-responsive promoter. We found that replication activity of plasmids carrying this promoter was inversely correlated with promoter activity. Replication activity was partially restored on plasmids when a transcriptional termination sequence was placed directly downstream of the promoter element. Transcriptional activity of the promoters and the efficacy of the terminator sequence were confirmed by using steady-state RNA analysis. These experiments suggest that transcription inhibits DNA replication on these plasmids and that the degree of inhibition is dependent on transcription strength. The possible significance of these results for chromosomal DNA replication are discussed.


1994 ◽  
Vol 14 (4) ◽  
pp. 2516-2524 ◽  
Author(s):  
S B Haase ◽  
S S Heinzel ◽  
M P Calos

This study addresses the effect of transcription on replication, using a system based on autonomously replicating plasmids in human cells. We added transcriptional elements from the human cytomegalovirus promoter/enhancer and the human beta-actin promoter to autonomously replicating plasmids based on human sequences and found that the transcriptional elements inhibited plasmid replication. Furthermore, conditional inhibition of plasmid replication was demonstrated by using a tetracycline-responsive promoter. We found that replication activity of plasmids carrying this promoter was inversely correlated with promoter activity. Replication activity was partially restored on plasmids when a transcriptional termination sequence was placed directly downstream of the promoter element. Transcriptional activity of the promoters and the efficacy of the terminator sequence were confirmed by using steady-state RNA analysis. These experiments suggest that transcription inhibits DNA replication on these plasmids and that the degree of inhibition is dependent on transcription strength. The possible significance of these results for chromosomal DNA replication are discussed.


Author(s):  
Dhruba K. Chattoraj ◽  
Ross B. Inman

Electron microscopy of replicating intermediates has been quite useful in understanding the mechanism of DNA replication in DNA molecules of bacteriophage, mitochondria and plasmids. The use of partial denaturation mapping has made the tool more powerful by providing a frame of reference by which the position of the replicating forks in bacteriophage DNA can be determined on the circular replicating molecules. This provided an easy means to find the origin and direction of replication in λ and P2 phage DNA molecules. DNA of temperate E. coli phage 186 was found to have an unique denaturation map and encouraged us to look into its mode of replication.


2010 ◽  
Vol 34 (8) ◽  
pp. S60-S60
Author(s):  
Yuning Sun ◽  
Fang Li ◽  
Jianming Qiu ◽  
Xiaohong Lu

1991 ◽  
Vol 82 (2) ◽  
pp. 150-156 ◽  
Author(s):  
Hong Wang ◽  
Adrian J. Cutler ◽  
Larry C. Fowke

2012 ◽  
Vol 50 (01) ◽  
Author(s):  
W Hu ◽  
YA Nevzorova ◽  
U Haas ◽  
P Sicinski ◽  
M Barbacid ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document