phage dna
Recently Published Documents


TOTAL DOCUMENTS

426
(FIVE YEARS 46)

H-INDEX

44
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Mindaugas Zaremba ◽  
Donata Dakineviciene ◽  
Edvardas Golovinas ◽  
Edvinas Stankunas ◽  
Anna Lopatina ◽  
...  

Abstract Argonaute (Ago) proteins are found in all three domains of life. The so-called long Agos are composed of four major domains (N, PAZ, MID, and PIWI) and contribute to RNA silencing in eukaryotes (eAgos) or defence against invading mobile genetic elements in prokaryotes (pAgos). Intriguingly, the majority (~60%) of prokaryotic Agos (pAgos) identified bioinformatically are shorter (comprised of only MID and PIWI domains) and are typically associated with Sir2, Mrr or TIR domain-containing proteins. The cellular function and mechanism of short pAgos remain enigmatic. Here, we show that short pAgos from Geobacter sulfurreducens, Caballeronia cordobensis and Paraburkholderia graminis, together with the NAD+-bound Sir2-proteins form a stable heterodimeric Sir2/Ago complex that recognizes invading plasmid or phage DNA through the pAgos subunit and activates Sir2 subunit triggering the endogenous NAD+ depletion and cell death thus preventing the propagation of invading DNA. This is the first demonstration that short Sir2-associated pAgos provide defence against phages and plasmids and underscores the diversity of mechanisms of prokaryotic Agos.


2021 ◽  
Author(s):  
Jack PK Bravo ◽  
Cristian A Maldonado ◽  
Franklin L Nobrega ◽  
Stan JJ Brouns ◽  
David W Taylor

In the evolutionary arms race against phage, bacteria have assembled a diverse arsenal of antiviral immune strategies. While the recently discovered DISARM (Defense Island System Associated with Restriction-Modification) systems can provide protection against a wide range of phage, the molecular mechanisms that underpin broad antiviral targeting but avoiding autoimmunity remain enigmatic. Here, we report cryo-EM structures of the core DISARM complex, DrmAB, both alone and in complex with an unmethylated phage DNA mimetic. These structures reveal that DrmAB core complex is autoinhibited by a trigger loop (TL) within DrmA and binding to DNA substrates containing a 5' overhang dislodges the TL, initiating a long-range structural rearrangement for DrmAB activation. Together with structure-guided in vivo studies, our work provides insights into the mechanism of phage DNA recognition and specific activation of this widespread antiviral defense system.


2021 ◽  
Author(s):  
Nastassia Knoedlseder ◽  
Guillermo Nevot ◽  
Mariajosé Fábrega ◽  
Júlia Mir-Pedrol ◽  
Marta Sanvicente ◽  
...  

Cutibacterium acnes (C. acnes) is a gram-positive bacterium and a member of the human skin microbiome. Despite being the most abundant skin commensal, certain members have been associated with common inflammatory disorders such as acne vulgaris. The availability of the complete genome sequences from various C. acnes clades have enabled the identification of putative methyltransferases, some of them potentially belonging to restriction-modification (R-M) systems which protect the host of invading DNA. However, little is known on whether these systems are functional in the different C. acnes strains. To investigate the activity of these putative R-M and their relevance in host protective mechanisms, we analyzed the methylome of seven representative C. acnes strains by Oxford Nanopore Technologies (ONT) sequencing. We detected the presence of a 6-methyladenine modification at a defined DNA consensus sequence in strain KPA171202 and recombinant expression of this R-M system confirmed its methylation activity. Additionally, a R-M knockout mutant verified the loss of methylation properties of the strain. We studied the potential of one C. acnes bacteriophage (PAD20) in killing various C. acnes strains and linked an increase in its specificity to phage DNA methylation acquired upon infection of a methylation competent strain. We demonstrate a therapeutic application of this mechanism where phages propagated in R-M deficient strains selectively kill R-M deficient acne-prone clades while probiotic ones remain resistant to phage infection.


2021 ◽  
Vol 1 (3) ◽  
pp. 403-423
Author(s):  
Elahe Soltani-Fard ◽  
Sina Taghvimi ◽  
Zahra Abedi Kichi ◽  
Christian Weber ◽  
Zahra Shabaninejad ◽  
...  

Non-coding RNAs (ncRNAs) are functional RNA molecules that comprise about 80% of both mammals and prokaryotes genomes. Recent studies have identified a large number of small regulatory RNAs in Escherichia coli and other bacteria. In prokaryotes, RNA regulators are a diverse group of molecules that modulate a wide range of physiological responses through a variety of mechanisms. Similar to eukaryotes, bacterial microRNAs are an important class of ncRNAs that play an important role in the development and secretion of proteins and in the regulation of gene expression. Similarly, riboswitches are cis-regulatory structured RNA elements capable of directly controlling the expression of downstream genes in response to small molecule ligands. As a result, riboswitches detect and respond to the availability of various metabolic changes within cells. The most extensive and most widely studied set of small RNA regulators act through base pairing with RNAs. These types of RNAs are vital for prokaryotic life, activating or suppressing important physiological processes by modifying transcription or translation. The majority of these small RNAs control responses to changes in environmental conditions. Finally, clustered regularly interspaced short palindromic repeat (CRISPR) RNAs, a newly discovered RNA regulator group, contains short regions of homology to bacteriophage and plasmid sequences that bacteria use to splice phage DNA as a defense mechanism. The detailed mechanism is still unknown but devoted to target homologous foreign DNAs. Here, we review the known mechanisms and roles of non-coding regulatory RNAs, with particular attention to riboswitches and their functions, briefly introducing translational applications of CRISPR RNAs in mammals.


2021 ◽  
Author(s):  
Mindaugas Zaremba ◽  
Donata Dakineviciene ◽  
Edvardas Golovinas ◽  
Edvinas Stankunas ◽  
Anna Lopatina ◽  
...  

Argonaute (Ago) proteins are found in all three domains of life. The so-called long Agos are composed of four major domains (N, PAZ, MID, and PIWI) and contribute to RNA silencing in eukaryotes (eAgos) or defence against invading mobile genetic elements in prokaryotes (pAgos). Intriguingly, the majority (~60%) of prokaryotic Agos (pAgos) identified bioinformatically are shorter (comprised of only MID and PIWI domains) and are typically associated with Sir2, Mrr or TIR domain-containing proteins. The cellular function and mechanism of short pAgos remain enigmatic. Here, we show that short pAgos from Geobacter sulfurreducens, Caballeronia cordobensis and Paraburkholderia graminis, together with the NAD+-bound Sir2-proteins form a stable heterodimeric Sir2/Ago complex that recognizes invading plasmid or phage DNA through the pAgos subunit and activates Sir2 subunit triggering the endogenous NAD+ depletion and cell death thus preventing the propagation of invading DNA. This is the first demonstration that short Sir2-associated pAgos provide defence against phages and plasmids and underscores the diversity of mechanisms of prokaryotic Agos.


2021 ◽  
Author(s):  
Julie Zaworski ◽  
Oyut Dagva ◽  
Julius Brandt ◽  
Chloé Baum ◽  
Laurence Ettwiller ◽  
...  

Understanding mechanisms that shape horizontal exchange in prokaryotes is a key problem in biology. A major limit on DNA entry is imposed by restriction-modification (RM) processes that depend on the pattern of DNA modification at host-specified sites. In classical RM, endonucleolytic DNA cleavage follows detection of unprotected sites on entering DNA. Recent investigation has uncovered BREX systems, RM-like activities that employ host protection by DNA modification but replication arrest without evident nuclease action on unmodified phage DNA. We show that the historical stySA RM locus of Salmonella enterica sv Typhimurium is a BREX homolog. The stySA29 allele of the hybrid strain LB5000 carries a mutated version of the ancestral LT2 BREX system. Surprisingly, both a restriction and a methylation defect are observed for this lineage despite lack of mutations in brxX, the modification gene homolog. Instead, flanking genes pglZ and brxC each carry multiple mutations (µ) in C-terminal domains. To avoid plasmid artifacts and potential stoichiometric interference, we chose to investigate this system in situ, replacing the mutated pglZµ and brxCµ genes with wild type (WT). PglZ-WT supports methylation in the presence of either BrxCµ or BrxC-WT but not in the presence of a deletion/insertion allele, ΔbrxC::cat. Restriction of phage L requires both BrxC-WT and PglZ-WT, implicating the BrxC C-terminus specifically in restriction activity. Disruption of four other CDS with cat cassettes still permitted modification, suggesting that BrxC, PglZ and BrxX are principal components of the modification activity. BrxL is required for restriction only. A partial disruption of brxL disrupts transcription globally.


PLoS Biology ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. e3001406
Author(s):  
Erin L. Attrill ◽  
Rory Claydon ◽  
Urszula Łapińska ◽  
Mario Recker ◽  
Sean Meaden ◽  
...  

Bacteriophages represent an avenue to overcome the current antibiotic resistance crisis, but evolution of genetic resistance to phages remains a concern. In vitro, bacteria evolve genetic resistance, preventing phage adsorption or degrading phage DNA. In natural environments, evolved resistance is lower possibly because the spatial heterogeneity within biofilms, microcolonies, or wall populations favours phenotypic survival to lytic phages. However, it is also possible that the persistence of genetically sensitive bacteria is due to less efficient phage amplification in natural environments, the existence of refuges where bacteria can hide, and a reduced spread of resistant genotypes. Here, we monitor the interactions between individual planktonic bacteria in isolation in ephemeral refuges and bacteriophage by tracking the survival of individual cells. We find that in these transient spatial refuges, phenotypic resistance due to reduced expression of the phage receptor is a key determinant of bacterial survival. This survival strategy is in contrast with the emergence of genetic resistance in the absence of ephemeral refuges in well-mixed environments. Predictions generated via a mathematical modelling framework to track bacterial response to phages reveal that the presence of spatial refuges leads to fundamentally different population dynamics that should be considered in order to predict and manipulate the evolutionary and ecological dynamics of bacteria–phage interactions in naturally structured environments.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Kun Zhou ◽  
Ying Xu ◽  
Rui Zhang ◽  
Pei-Yuan Qian

Abstract Background Deep-sea animals in hydrothermal vents often form endosymbioses with chemosynthetic bacteria. Endosymbionts serve essential biochemical and ecological functions, but the prokaryotic viruses (phages) that determine their fate are unknown. Results We conducted metagenomic analysis of a deep-sea vent snail. We assembled four genome bins for Caudovirales phages that had developed dual endosymbiosis with sulphur-oxidising bacteria (SOB) and methane-oxidising bacteria (MOB). Clustered regularly interspaced short palindromic repeat (CRISPR) spacer mapping, genome comparison, and transcriptomic profiling revealed that phages Bin1, Bin2, and Bin4 infected SOB and MOB. The observation of prophages in the snail endosymbionts and expression of the phage integrase gene suggested the presence of lysogenic infection, and the expression of phage structural protein and lysozyme genes indicated active lytic infection. Furthermore, SOB and MOB appear to employ adaptive CRISPR–Cas systems to target phage DNA. Additional expressed defence systems, such as innate restriction–modification systems and dormancy-inducing toxin–antitoxin systems, may co-function and form multiple lines for anti-viral defence. To counter host defence, phages Bin1, Bin2, and Bin3 appear to have evolved anti-restriction mechanisms and expressed methyltransferase genes that potentially counterbalance host restriction activity. In addition, the high-level expression of the auxiliary metabolic genes narGH, which encode nitrate reductase subunits, may promote ATP production, thereby benefiting phage DNA packaging for replication. Conclusions This study provides new insights into phage–bacteria interplay in intracellular environments of a deep-sea vent snail.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1732
Author(s):  
Aleksandra Petrovic Fabijan ◽  
Verica Aleksic Sabo ◽  
Damir Gavric ◽  
Zsolt Doffkay ◽  
Gábor Rakhely ◽  
...  

Bordetella bronchiseptica is a respiratory animal pathogen that shows growing resistance to commonly used antibiotics, which has necessitated the examination of new antimicrobials, including bacteriophages. In this study, we examined the previously isolated and partially characterized B. bronchiseptica siphoviruses of the genus Vojvodinavirus (LK3, CN1, CN2, FP1 and MW2) for their ability to inhibit bacterial growth and biofilm, and we examined other therapeutically important properties through genomic analysis and lysogeny experiments. The phages inhibited bacterial growth at a low multiplicity of infection (MOI = 0.001) of up to 85% and at MOI = 1 for >99%. Similarly, depending on the phages and MOIs, biofilm formation inhibition ranged from 65 to 95%. The removal of biofilm by the phages was less efficient but still considerably high (40–75%). Complete genomic sequencing of Bordetella phage LK3 (59,831 bp; G + C 64.01%; 79 ORFs) showed integrase and repressor protein presence, indicating phage potential to lysogenize bacteria. Lysogeny experiments confirmed the presence of phage DNA in bacterial DNA upon infection using PCR, which showed that the LK3 phage forms more or less stable lysogens depending on the bacterial host. Bacterial infection with the LK3 phage enhanced biofilm production, sheep blood hemolysis, flagellar motility, and beta-lactam resistance. The examined phages showed considerable anti-B. bronchiseptica activity, but they are inappropriate for therapy because of their temperate nature and lysogenic conversion of the host bacterium.


2021 ◽  
Vol 12 ◽  
Author(s):  
Vorrapon Chaikeeratisak ◽  
Erica A. Birkholz ◽  
Joe Pogliano

Bacteriophages and their bacterial hosts are ancient organisms that have been co-evolving for billions of years. Some jumbo phages, those with a genome size larger than 200 kilobases, have recently been discovered to establish complex subcellular organization during replication. Here, we review our current understanding of jumbo phages that form a nucleus-like structure, or “Phage Nucleus,” during replication. The phage nucleus is made of a proteinaceous shell that surrounds replicating phage DNA and imparts a unique subcellular organization that is temporally and spatially controlled within bacterial host cells by a phage-encoded tubulin (PhuZ)-based spindle. This subcellular architecture serves as a replication factory for jumbo Pseudomonas phages and provides a selective advantage when these replicate in some host strains. Throughout the lytic cycle, the phage nucleus compartmentalizes proteins according to function and protects the phage genome from host defense mechanisms. Early during infection, the PhuZ spindle positions the newly formed phage nucleus at midcell and, later in the infection cycle, the spindle rotates the nucleus while delivering capsids and distributing them uniformly on the nuclear surface, where they dock for DNA packaging. During the co-infection of two different nucleus-forming jumbo phages in a bacterial cell, the phage nucleus establishes Subcellular Genetic Isolation that limits the potential for viral genetic exchange by physically separating co-infection genomes, and the PhuZ spindle causes Virogenesis Incompatibility, whereby interacting components from two diverging phages negatively affect phage reproduction. Thus, the phage nucleus and PhuZ spindle are defining cell biological structures that serve roles in both the life cycle of nucleus-forming jumbo phages and phage speciation.


Sign in / Sign up

Export Citation Format

Share Document