Real-time visualization of cell cycle-dependent changes in microtubule dynamics in cytoplasmic extracts

Cell ◽  
1990 ◽  
Vol 62 (3) ◽  
pp. 579-589 ◽  
Author(s):  
L.D. Belmont ◽  
A.A. Hyman ◽  
K.E. Sawin ◽  
T.J. Mitchison
2021 ◽  
Author(s):  
Alexander Julner ◽  
Marjan Abbasi ◽  
Victoria Menendez Benito

During mitosis, sister chromatids congress on either side of the spindle equator to facilitate the correct partitioning of the genomic material. Chromosome congression requires a finely tuned control of microtubule dynamics by the kinesin motor proteins. In Saccharomyces cerevisiae, the kinesin proteins Cin8, Kip1, and Kip3 have pivotal roles in chromosome congression. It has been hypothesized that additional proteins that modulate microtubule dynamics are also involved. Here, we show that the microtubule plus-end tracking protein Bik1 (the budding yeast ortholog of CLIP-170) is essential for chromosome congression. We find that nuclear Bik1 localizes to the kinetochores in a cell-cycle-dependent manner. Disrupting the nuclear pool of Bik1 with a nuclear export signal (Bik1-NES) leads to a slower cell cycle progression characterized by a delayed metaphase-anaphase transition. Bik1-NES cells have mispositioned kinetochores along the spindle in metaphase. Furthermore, using proximity-dependent methods, we identify Cin8 as an interaction partner of Bik1. Deleting CIN8 reduces the amount of Bik1 at the spindle. In contrast, Cin8 retains its typical bilobed distribution in Bik1-NES and does not localize to the unclustered kinetochores characteristic of Bik1-NES cells. Thus, we propose that Bik1 functions together with Cin8 to regulate kinetochore-microtubule dynamics for correct kinetochore positioning and chromosome congression.


Cell Cycle ◽  
2017 ◽  
Vol 16 (5) ◽  
pp. 406-414 ◽  
Author(s):  
Shuya Yano ◽  
Kiyoto Takehara ◽  
Hiroshi Tazawa ◽  
Hiroyuki Kishimoto ◽  
Yasuo Urata ◽  
...  

2001 ◽  
Vol 12 (4) ◽  
pp. 971-980 ◽  
Author(s):  
Nasser M. Rusan ◽  
Carey J. Fagerstrom ◽  
Anne-Marie C. Yvon ◽  
Patricia Wadsworth

LLCPK-1 cells were transfected with a green fluorescent protein (GFP)-α tubulin construct and a cell line permanently expressing GFP-α tubulin was established (LLCPK-1α). The mitotic index and doubling time for LLCPK-1α were not significantly different from parental cells. Quantitative immunoblotting showed that 17% of the tubulin in LLCPK-1α cells was GFP-tubulin; the level of unlabeled tubulin was reduced to 82% of that in parental cells. The parameters of microtubule dynamic instability were compared for interphase LLCPK-1α and parental cells injected with rhodamine-labeled tubulin. Dynamic instability was very similar in the two cases, demonstrating that LLCPK-1α cells are a useful tool for analysis of microtubule dynamics throughout the cell cycle. Comparison of astral microtubule behavior in mitosis with microtubule behavior in interphase demonstrated that the frequency of catastrophe increased twofold and that the frequency of rescue decreased nearly fourfold in mitotic compared with interphase cells. The percentage of time that microtubules spent in an attenuated state, or pause, was also dramatically reduced, from 73.5% in interphase to 11.4% in mitosis. The rates of microtubule elongation and rapid shortening were not changed; overall dynamicity increased 3.6-fold in mitosis. Microtubule release from the centrosome and a subset of differentially stable astral microtubules were also observed. The results provide the first quantitative measurements of mitotic microtubule dynamics in mammalian cells.


1987 ◽  
Vol 116 (3_Suppl) ◽  
pp. S81
Author(s):  
U. VETTER ◽  
W. HARTMANN ◽  
H. HITZLER ◽  
W. HEIT ◽  
J. SCHLICKENRIEDER ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document