quantitative immunoblotting
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 9)

H-INDEX

26
(FIVE YEARS 1)

Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2723
Author(s):  
Greisha L. Ortiz-Hernandez ◽  
Evelyn S. Sanchez-Hernandez ◽  
Pedro T. Ochoa ◽  
Catherine C. Elix ◽  
Hossam R. Alkashgari ◽  
...  

Patients with prostate cancer (PCa) receiving docetaxel chemotherapy invariably develop chemoresistance. The transcription co-activator lens epithelium-derived growth factor p75 (LEDGF/p75), also known as DFS70 and PSIP1, is upregulated in several human cancers, including PCa and promotes resistance to docetaxel and other drugs. The C-terminal region of LEDGF/p75 contains an integrase binding domain (IBD) that tethers nuclear proteins, including the HIV-1 integrase and transcription factors, to active chromatin to promote viral integration and transcription of cellular survival genes. Here, we investigated the contribution of the LEDGF/p75 IBD interactome to PCa chemoresistance. Quantitative immunoblotting revealed that LEDGF/p75 and its IBD-interacting partners are endogenously upregulated in docetaxel-resistant PCa cell lines compared to docetaxel-sensitive parental cells. Using specific human autoantibodies, we co-immunoprecipitated LEDGF/p75 with its endogenous IBD-interacting partners JPO2, menin, MLL, IWS1, ASK1, and PogZ, as well as transcription factors c-MYC and HRP2, in docetaxel-resistant cells, and confirmed their nuclear co-localization by confocal microscopy. Depletion of LEDGF/p75 and selected interacting partners robustly decreased the survival, clonogenicity, and tumorsphere formation capacity of docetaxel-resistant cells. These results implicate the LEDGF/p75 IBD interactome in PCa chemoresistance and could lead to novel therapeutic strategies targeting this protein complex for the treatment of docetaxel-resistant tumors.


2021 ◽  
pp. 1-11
Author(s):  
Nicholas S. Caron ◽  
Christine Anderson ◽  
Hailey Findlay Black ◽  
Shaun S. Sanders ◽  
Fanny L. Lemarié ◽  
...  

Background: Therapeutics that lower mutant huntingtin (mHTT) have shown promise in preclinical studies and are in clinical development for the treatment of Huntington’s disease (HD). Multiple assays have been developed that either quantify mHTT or total HTT but may not accurately measure levels of wild type HTT (wtHTT) in biological samples. Objective: To optimize a method that can be used to resolve, quantify and directly compare levels of full length wtHTT and mHTT in HD samples. Methods: We provide a detailed quantitative immunoblotting protocol to reproducibly resolve full length wtHTT and mHTT in multiple HD mouse and patient samples. Results: We show that this assay can be modified, depending on the sample, to resolve wtHTT and mHTT with a wide range of polyglutamine differences (ΔQs 22–179). We also demonstrate that this method can be used to quantify allele-selective lowering of mHTT using an antisense oligonucleotide in HD patient-derived cells. Conclusion: This quantitative immunoblotting method can be used to reliably resolve full length HTT alleles with ΔQs≥22 and allows for direct comparison of wtHTT and mHTT levels in HD samples.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 614
Author(s):  
Nina Weiler ◽  
Caroline Paal ◽  
Kerstin Adams ◽  
Christopher Calcaterra ◽  
Dina Fischer ◽  
...  

The role of viral envelope glycoproteins, particularly the accessory proteins of trimeric and pentameric gH/gL-complexes, in cell-associated spread of human cytomegalovirus (HCMV) is unclear. We aimed to investigate their contribution in the context of HCMV variants that grow in a strictly cell-associated manner. In the genome of Merlin pAL1502, the glycoproteins gB, gH, gL, gM, and gN were deleted by introducing stop codons, and the mutants were analyzed for viral growth. Merlin and recent HCMV isolates were compared by quantitative immunoblotting for expression of accessory proteins of the trimeric and pentameric gH/gL-complexes, gO and pUL128. Isolates were treated with siRNAs against gO and pUL128 and analyzed regarding focal growth and release of infectious virus. All five tested glycoproteins were essential for growth of Merlin pAL1502. Compared with this model virus, higher gO levels were measured in recent isolates of HCMV, and its knockdown decreased viral growth. Knockdown of pUL128 abrogated the strict cell-association and led to release of infectivity, which allowed cell-free transfer to epithelial cells where the virus grew again strictly cell-associated. We conclude that both trimer and pentamer contribute to cell-associated spread of recent clinical HCMV isolates and downregulation of pentamer can release infectious virus into the supernatant.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 225
Author(s):  
Michael B. Sheahan ◽  
David A. Collings ◽  
Ray J. Rose ◽  
David W. McCurdy

In Arabidopsis, the actin gene family comprises eight expressed and two non-expressed ACTIN (ACT) genes. Of the eight expressed isoforms, ACT2, ACT7, and ACT8 are differentially expressed in vegetative tissues and may perform specific roles in development. Using tobacco mesophyll protoplasts, we previously demonstrated that actin-dependent clustering of chloroplasts around the nucleus prior to cell division ensures unbiased chloroplast inheritance. Here, we report that actin-dependent chloroplast clustering in Arabidopsis mesophyll protoplasts is defective in act7 mutants, but not act2-1 or act8-2. ACT7 expression was upregulated during protoplast culture whereas ACT2 and ACT8 expression did not substantially change. In act2-1, ACT7 expression increased in response to loss of ACT2, whereas in act7-1, neither ACT2 nor ACT8 expression changed appreciably in response to the absence of ACT7. Semi-quantitative immunoblotting revealed increased actin concentrations during culture, although total actin in act7-1 was only two-thirds that of wild-type or act2-1 after 96 h culture. Over-expression of ACT2 and ACT8 under control of ACT7 regulatory sequences restored normal levels of chloroplast clustering. These results are consistent with a requirement for ACT7 in actin-dependent chloroplast clustering due to reduced levels of actin protein and gene induction in act7 mutants, rather than strong functional specialization of the ACT7 isoform.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Inga Baasch Christensen ◽  
Qi Wu ◽  
Anders Solitander Bohlbro ◽  
Marianne Gerberg Skals ◽  
Helle Hasager Damkier ◽  
...  

Abstract Background Genetic disruption of slc4a10, which encodes the sodium-dependent chloride/bicarbonate exchanger Ncbe, leads to a major decrease in Na+-dependent HCO3− import into choroid plexus epithelial cells in mice and to a marked reduction in brain intraventricular fluid volume. This suggests that Ncbe functionally is a key element in vectorial Na+ transport and thereby for cerebrospinal fluid secretion in the choroid plexus. However, slc4a10 disruption results in severe changes in expression of Na+,K+-ATPase complexes and other major transport proteins, indicating that profound cellular changes accompany the genetic manipulation. Methods A tandem mass tag labeling strategy was chosen for quantitative mass spectrometry. Alterations in the broader patterns of protein expression in the choroid plexus in response to genetic disruption of Ncbe was validated by semi-quantitative immunoblotting, immunohistochemistry and morphometry. Results The abundance of 601 proteins were found significantly altered in the choroid plexus from Ncbe ko mice relative to Ncbe wt. In addition to a variety of transport proteins, particularly large changes in the abundance of proteins involved in cellular energy metabolism were detected in the Ncbe ko mice. In general, the abundance of rate limiting glycolytic enzymes and several mitochondrial enzymes were reduced following slc4a10 disruption. Surprisingly, this was accompanied by increased ATP levels in choroid plexus cells, indicating that the reduction in capacity for energy metabolism was adaptive to high ATP rather than causal for a decreased capacity for ion and water transport. Ncbe-deficient cells also had a reduced cell area and decreased K+ content. Conclusion Our findings suggest that the lack of effective Na+-entry into the epithelial cells of the choroid plexus leads to a profound change in the cellular phenotype, shifting from a high-rate secretory function towards a more dormant state; similar to what is observed during ageing or Alzheimer’s disease.


2018 ◽  
Vol 115 (47) ◽  
pp. E11120-E11127 ◽  
Author(s):  
Tamara L. Lenis ◽  
Jane Hu ◽  
Sze Yin Ng ◽  
Zhichun Jiang ◽  
Shanta Sarfare ◽  
...  

Recessive Stargardt disease (STGD1) is an inherited blinding disorder caused by mutations in the Abca4 gene. ABCA4 is a flippase in photoreceptor outer segments (OS) that translocates retinaldehyde conjugated to phosphatidylethanolamine across OS disc membranes. Loss of ABCA4 in Abca4−/− mice and STGD1 patients causes buildup of lipofuscin in the retinal pigment epithelium (RPE) and degeneration of photoreceptors, leading to blindness. No effective treatment currently exists for STGD1. Here we show by several approaches that ABCA4 is additionally expressed in RPE cells. (i) By in situ hybridization analysis and by RNA-sequencing analysis, we show the Abca4 mRNA is expressed in human and mouse RPE cells. (ii) By quantitative immunoblotting, we show that the level of ABCA4 protein in homogenates of wild-type mouse RPE is about 1% of the level in neural retina homogenates. (iii) ABCA4 immunofluorescence is present in RPE cells of wild-type and Mertk−/− but not Abca4−/− mouse retina sections, where it colocalizes with endolysosomal proteins. To elucidate the role of ABCA4 in RPE cells, we generated a line of genetically modified mice that express ABCA4 in RPE cells but not in photoreceptors. Mice from this line on the Abca4−/− background showed partial rescue of photoreceptor degeneration and decreased lipofuscin accumulation compared with nontransgenic Abca4−/− mice. We propose that ABCA4 functions to recycle retinaldehyde released during proteolysis of rhodopsin in RPE endolysosomes following daily phagocytosis of distal photoreceptor OS. ABCA4 deficiency in the RPE may play a role in the pathogenesis of STGD1.


Sign in / Sign up

Export Citation Format

Share Document