On the depletion of a thin liquid film over a rough rotating disk

1990 ◽  
Vol 17 (6) ◽  
pp. 423-428 ◽  
Author(s):  
J.H. Hwang ◽  
F. Ma
1999 ◽  
Vol 26 (1-2) ◽  
pp. 75-85 ◽  
Author(s):  
G. Leneweit ◽  
K. G. Roesner ◽  
R. Koehler

1991 ◽  
Vol 113 (1) ◽  
pp. 73-80 ◽  
Author(s):  
S. Thomas ◽  
A. Faghri ◽  
W. Hankey

The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed ranged from 0–300 rpm and the flow rate varied from 7.0–15.0 lpm. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Upstream from the jump, the film thickness was determined by the inertial and frictional forces on the fluid, and the radial spreading of the film. The surface tension at the edge of the disk affected the film thickness downstream from the jump. For the rotating disk, the film thickness was dependent upon the inertial and frictional forces near the center of the disk and the centrifugal forces near the edge of the disk.


1991 ◽  
Vol 69 (4) ◽  
pp. 2593-2601 ◽  
Author(s):  
S. Kim ◽  
J. S. Kim ◽  
F. Ma

1989 ◽  
Vol 66 (1) ◽  
pp. 388-394 ◽  
Author(s):  
J. H. Hwang ◽  
F. Ma

2006 ◽  
Vol 129 (5) ◽  
pp. 657-663 ◽  
Author(s):  
S. Basu ◽  
B. M. Cetegen

Flow and heat transfer in a liquid film flowing over the surface of a rotating disk was analyzed by integral technique. The integral analysis includes the prediction of the hydraulic jump and its effects on heat transfer. The results of this analysis are compared to the earlier results that did not include this effect. At low inlet Reynolds numbers and high Rossby numbers, corresponding to low film inertia and low rotation rates, respectively, a hydraulic jump appears on the disk surface. The location of the jump and the liquid film height at this location are predicted. A scaling analysis of the equations governing the film thickness provided a semi-empirical expression for these quantities that was found to be in very good agreement with numerical results. Heat transfer analysis shows that the Nusselt numbers for both constant disk surface temperature and constant disk surface heat flux boundary conditions are lowered in the vicinity of the hydraulic jump due to the thickened liquid film. This effect can be more pronounced for the constant heat flux case depending on the location of the hydraulic jump. The Nusselt number exhibits a turning point at the jump location and can have higher values downstream of the hydraulic jump compared to those obtained from the analysis that does not include the gravitational effects.


Sign in / Sign up

Export Citation Format

Share Document