95/06389 Inert gases to reduce emissions and improve integrated gasification combined cycle performance

1995 ◽  
Vol 36 (6) ◽  
pp. 451
Author(s):  
Henry A. Long ◽  
Ting Wang ◽  
Arian Thomas

Coal is a prominent energy resource in the modern world, particularly in countries with emerging economies. In order to reduce emissions, it is necessary to find a way to utilize coal in a cleaner manner, such as through supercritical and ultra-supercritical Rankine cycles and the Integrated Gasification Combined Cycle (IGCC). Two approaches — raising the boiler pressure and using a reheat scheme — have been proven to notably increase the Rankine cycle efficiency. Thus, this study aims to investigate the effects of implementing reheat and supercritical or ultra-supercritical pressure in the bottom Rankine cycle on the IGCC cycle efficiency. First, reference cases of a standalone Rankine cycle were studied with single and double reheat, including boiler pressure levels from subcritical to ultra-supercritical conditions, followed by similar combined cycle cases, and finally IGCC systems. The results indicate that the notable efficiency enhancement in the standalone subcritical Rankine cycle do not prevail in the studied IGCC systems. Thus, it is not economically worthwhile to implement supercritical or ultra-supercritical bottom Rankine cycles in IGCC applications.


2020 ◽  
pp. 99-111
Author(s):  
Vontas Alfenny Nahan ◽  
Audrius Bagdanavicius ◽  
Andrew McMullan

In this study a new multi-generation system which generates power (electricity), thermal energy (heating and cooling) and ash for agricultural needs has been developed and analysed. The system consists of a Biomass Integrated Gasification Combined Cycle (BIGCC) and an absorption chiller system. The system generates about 3.4 MW electricity, 4.9 MW of heat, 88 kW of cooling and 90 kg/h of ash. The multi-generation system has been modelled using Cycle Tempo and EES. Energy, exergy and exergoeconomic analysis of this system had been conducted and exergy costs have been calculated. The exergoeconomic study shows that gasifier, combustor, and Heat Recovery Steam Generator are the main components where the total cost rates are the highest. Exergoeconomic variables such as relative cost difference (r) and exergoeconomic factor (f) have also been calculated. Exergoeconomic factor of evaporator, combustor and condenser are 1.3%, 0.7% and 0.9%, respectively, which is considered very low, indicates that the capital cost rates are much lower than the exergy destruction cost rates. It implies that the improvement of these components could be achieved by increasing the capital investment. The exergy cost of electricity produced in the gas turbine and steam turbine is 0.1050 £/kWh and 0.1627 £/kWh, respectively. The cost of ash is 0.0031 £/kg. In some Asian countries, such as Indonesia, ash could be used as fertilizer for agriculture. Heat exergy cost is 0.0619 £/kWh for gasifier and 0.3972 £/kWh for condenser in the BIGCC system. In the AC system, the exergy cost of the heat in the condenser and absorber is about 0.2956 £/kWh and 0.5636 £/kWh, respectively. The exergy cost of cooling in the AC system is 0.4706 £/kWh. This study shows that exergoeconomic analysis is powerful tool for assessing the costs of products.


Sign in / Sign up

Export Citation Format

Share Document