Heat transfer and pressure drop during evaporation and condensation of R22 in horizontal micro-fin tubes

1989 ◽  
Vol 12 (1) ◽  
pp. 6-14 ◽  
Author(s):  
L.M Schlager ◽  
M.B Pate ◽  
A.E Bergles
Author(s):  
Wei Li ◽  
Dan Huang ◽  
Zan Wu ◽  
Hong-Xia Li ◽  
Zhao-Yan Zhang ◽  
...  

An experimental investigation was performed for convective condensation of R410A inside four micro-fin tubes with the same outside diameter (OD) 5 mm and helix angle 18°. Data are for mass fluxes ranging from about 180 to 650 kg/m2s. The nominal saturation temperature is 320 K, with inlet and outlet qualities of 0.8 and 0.1, respectively. The results suggest that Tube 4 has the best thermal performance for its largest condensation heat transfer coefficient and relatively low pressure drop penalty. Condensation heat transfer coefficient decreases at first and then increases or flattens out gradually as G decreases. This complex mass-flux effect may be explained by the complex interactions between micro-fins and fluid. The heat transfer enhancement mechanism is mainly due to the surface area increase over the plain tube at large mass fluxes, while liquid drainage and interfacial turbulence play important roles in heat transfer enhancement at low mass fluxes. In addition, the experimental data was analyzed using seven existing pressure-drop and four heat-transfer models to verify their respective accuracies.


Author(s):  
Hou Kuan Tam ◽  
Lap Mou Tam ◽  
Afshin J. Ghajar ◽  
Cheong Sun ◽  
Hau Yin Leung

To increase heat transfer, internally micro-fin tubes are widely used in commercial HVAC applications. It is commonly understood that the micro-fin enhances heat transfer but at the same time increases the pressure drop as well. In the previous studies, majority of the works were focused on the development of correlations in a particular flow regime, especially in the turbulent region. There are only a few works that fundamentally studied the continuous change in the characteristic behavior of pressure drop and heat transfer from laminar to transition and eventually the turbulent regions. Therefore, more in-depth study is necessary. In this study, pressure drop and heat transfer were measured simultaneously in a single test section fitted with several micro-fin tubes and the measured data was compared with the data of a plain tube. There were different fin geometries (fin spiral angle, fin height, and number of fins per cross-sectional area) inside the micro-fin tubes. From the friction factor results, the transition from laminar to turbulent was clearly established and shown to be inlet dependent. The transition friction factor characteristic for the micro-fin tubes was different from that of the plain tube. The transition range for the micro-fin tubes was shown to be much wider than that of the plain tube. From the experimental results, it could also be observed that the increase of fin spiral angle lead to the early transition for the friction factor. For the heating condition, the effect of heating on the friction factor was observed primarily in the lower transition region. From the heat transfer results, the transition from laminar to turbulent was clearly established and shown to be inlet and spiral angle dependent. The larger spiral angle caused the earlier transition and the higher heat transfer inside the micro-fin tube. For all the micro-fin tubes with two inlet types, it can be observed that the efficiency index is larger than one when Reynolds number is larger than 5,000.


Sign in / Sign up

Export Citation Format

Share Document