Nonlinear high-temperature fracture mechanics basis for strain-range partitioningKitamura, T. and Halford, G. R. NASA Lewis Research Center Report No N90-14642/4/XAB Oct. 1989 17 pp

1990 ◽  
Vol 12 (6) ◽  
pp. 526-526
Author(s):  
Jih-Fen Lei ◽  
Lisa C. Martin ◽  
Herbert A. Will

Advanced thin film sensor techniques that can provide accurate surface strain and temperature measurements are being developed at NASA Lewis Research Center. These sensors are needed to provide minimally intrusive characterization of advanced materials (such as ceramics and composites) and structures (such as components for Space Shuttle Main Engine, High Speed Civil Transport, Advanced Subsonic Transports and General Aviation Aircraft) in hostile, high-temperature environments, and for validation of design codes. This paper presents two advanced thin film sensor technologies: strain gauges and thermocouples. These sensors are sputter deposited directly onto the test articles and are only a few micrometers thick; the surface of the test article is not structurally altered and there is minimal disturbance of the gas flow over the surface. The strain gauges are palladium-13% chromium based and the thermocouples are platinum-13% rhodium vs. platinum. The fabrication techniques of these thin film sensors in a class 1000 cleanroom at the NASA Lewis Research Center are described. Their demonstration on a variety of engine materials, including superalloys, ceramics and advanced ceramic matrix composites, in several hostile, high-temperature test environments are discussed.


Sign in / Sign up

Export Citation Format

Share Document