temperature fracture
Recently Published Documents


TOTAL DOCUMENTS

361
(FIVE YEARS 47)

H-INDEX

29
(FIVE YEARS 4)

Author(s):  
Zhongqiang Zhou ◽  
Hu Hui ◽  
Qingfeng Cui ◽  
Song Huang ◽  
Yalin Zhang

In order to prevent the brittle fracture accident, minimum design metal temperature of ferrite steel should be limited. After the minimum design metal temperature curve in American Society of Mechanical Engineers VIII-2 (2007) was proposed, much related research has been done in recent years. In this paper, firstly the theoretical basis of four methods used to determine the minimum design metal temperature was introduced. Secondly, the mechanical properties of Q345R was measured by tensile test, Charpy v-notch impact test and fracture toughness test Thirdly, minimum design metal temperature curve of Q345R that determined by four methods were obtained. There are obvious difference between the curves of Q345R that determined by four methods. It can be concluded that low temperature fracture toughness of Q345R is underestimated when classifying Q345R into exemption curve A in American Society of Mechanical Engineers VIII-2 (2007).


2021 ◽  
pp. 358-362
Author(s):  
Christian Gerald Daniel* ◽  
Xueyan Liu ◽  
Panos Apostolidis ◽  
S.M.J.G. Erkens ◽  
A. Scarpas

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1839
Author(s):  
Byeong Chan Choi ◽  
Byoungkoo Kim ◽  
Byung Jun Kim ◽  
Yong-Wook Choi ◽  
Sang Joon Lee ◽  
...  

This study investigated the low-temperature fracture behavior of an 80-mm-thick low-carbon steel plate welded by submerged arc. The relationship between impact absorbed energy and ductility–brittle transition temperature (DBTT) based on the microstructures was evaluated through quantitative analysis on grain size and complex constituent phases using advanced EBSD technique. The microstructure formed differently depending on the heat affections, which determined fracture properties in a low-temperature environment. Among the various microstructures of the heat-affected zone (HAZ), acicular ferrite has the greatest resistance to low-temperature impact due to its fine interlocking formation and its high-angle grain boundaries.


2021 ◽  
Author(s):  
Muhammad Rashid ◽  
Timothy Hylton ◽  
Neil Anderson ◽  
Leijun Li ◽  
Laurie Collins

Sign in / Sign up

Export Citation Format

Share Document