control concept
Recently Published Documents


TOTAL DOCUMENTS

620
(FIVE YEARS 97)

H-INDEX

30
(FIVE YEARS 3)

BMC Chemistry ◽  
2022 ◽  
Vol 16 (1) ◽  
Author(s):  
Sanae Tarhouchi ◽  
Rkia Louafy ◽  
El Houssine El Atmani ◽  
Miloudi Hlaïbi

Abstract Background Paracetamol compound remains the most used pharmaceutical as an analgesic and antipyretic for pain and fever, often identified in aquatic environments. The elimination of this compound from wastewater is one of the critical operations carried out by advanced industries. Our work objective was to assess studies based on membrane processes by using two membranes, polymer inclusion membrane and grafted polymer membrane containing gluconic acid as an extractive agent for extracting and recovering paracetamol compound from aqueous solutions. Result The elaborated membrane characterizations were assessed using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Kinetic and thermodynamic models have been applied to determine the values of macroscopic (P and J0), microscopic (D* and Kass), activation and thermodynamic parameters (Ea, ΔH#, ΔS#, ΔH#diss, and ΔH#th). All results showed that the PVA–GA was more performant than its counterpart GPM–GA, with apparent diffusion coefficient values (107D*) of 41.807 and 31.211 cm2 s−1 respectively, at T = 308 K. In addition, the extraction process for these membranes was more efficient at pH = 1. The relatively low values of activation energy (Ea), activation association enthalpy (ΔH≠ass), and activation dissociation enthalpy (ΔH≠diss) have indicated a kinetic control for the oriented processes studied across the adopted membranes much more than the energetic counterpart. Conclusion The results presented for the quantification of oriented membrane process ensured clean, sustainable, and environmentally friendly methods for the extraction and recovery of paracetamol molecule as a high-value substance.


2021 ◽  
Vol 27 (12) ◽  
pp. 2746-2771
Author(s):  
Mariya Yu. ORLOVA

Subject. The article discusses theoretical and practical principles of internal control from the building stage to maintaining its effectiveness at a high level. Objectives. The aim is to examine various interpretations of internal control and internal control procedure concepts, detect difficulties of economic entities in developing, implementing, and managing the internal control, offer a model, enabling to systematize these processes through focusing on risk management of key business processes and harmonization of internal control procedures. Methods. The study rests on general methods of research, like logical analysis, generalization, grouping, and modeling. Statutory instruments in the sphere of financial and fiscal accounting and works by domestic authors serve as a theoretical framework for the study. Results. I analyze the internal control, considering the industry affiliation of economic actors. The interpretation of internal control concept is supplemented by a new element, i.e. ‘identification of key business processes’. The paper presents a matrix of internal control management, which is intended to mitigate risks inherent in key business processes. Conclusions. The said matrix may be used by any economic entity as a theoretical and methodological basis for building internal controls. The offered model and matrix enable to cover risk areas and mitigate significant risks, ensure the accuracy of financial reporting, and, as a result, sustainable development of economic entity.


Author(s):  
Ulrich Werner

AbstractIn the paper, a theoretical analysis regarding foundation forces caused by dynamic air gap torques of converter-driven induction motors, influenced by active vibration control, is shown. Based on a plane model, where actuators are placed between the motor feet and steel frame foundation and where the vertical motor feet accelerations are controlled, a mathematical description in the time domain, Laplace domain, and Fourier domain is presented, as well as a block diagram for numerical simulation. A numerical example is shown, where a 2-pole induction motor (2 MW) is analyzed for different cases—motor directly mounted on a steel frame foundation (case 1), actuators between motor feet and foundation, operating passively (case 2) and actively (case 3). It could be shown, that with the presented active vibration control concept the foundation forces due to dynamic air gap torques can be clearly reduced.


2021 ◽  
pp. 0309524X2110635
Author(s):  
Nikola D Pesut ◽  
Rade M Ciric

One of the key issues in the efficient conversion of wind kinetic energy into electricity is the regulation of turbine speed to achieve maximum electrical power generation. The asynchronous generator with full load double AC-DC-AC power converter has not been widely used due to its poor performance in low wind speed. In this paper a method for turbine speed control of induction generator with full-scale double AC-DC-AC power converter to maximize absorbed wind power in the wide wind speed range, using the calculated maximum turbine power as a reference, is proposed. The configuration of an AC-DC-AC converter for connecting an asynchronous generator to the grid, as well as modeling of Pulse Width Modulation converter is presented in detail. Performance of the proposed control concept to maximize the absorbed wind power is verified through the simulation in MATLAB®. Finally, the advantages and disadvantages of the proposed control concept are discussed.


2021 ◽  
Author(s):  
Abdullah Al Musalhi ◽  
Salim Al Mawali ◽  
Ali Al Ruqaishi

Abstract With increasing wells connected to central facilities, it is hard to manage water flood using traditional technique. Therefore, a novel control concept named Swinging Water Injection Targets (SWIT) was developed in PDO to manage the challenges and satisfies both surface/subsurface requirements. The objectives of SWIT are: Maximize water injection well compliance. Minimize oil deferment due to water disposal restriction. Automated system that manages the variations in produced water flow with minimum interventions. SWIT concept is using the tolerance of ± 20% of desired injection target (Compliance limit) for each water injection (WI) well. So rather than having a fixed target, a minimum and maximum injection flow are giving to each WI well flow controller. Those range are provided by subsurface to ensure minimal impact for the rate fluctuation. The injection flows are driven by WI header pressure controller. When the produced water, the WI header pressure increases then the pressure controller to control the pressure asks all WI wells simultaneously increasing their injection flow at the same relative portion (Optimized distribution). Also, when the produced water decreases all WI flow starts reducing in the same way. SWIT concept proved success in PDO and it became a standard. It was first introduced in small field. Later, it was replicated across the company fields. The biggest scale implementation was in a cluster with more than 500 WI wells. Previously, in that cluster the WI header pressure was fluctuating indicating issues with water balance. Many manual adjustments were required to manage the situations when the produced water is more than the injection demand by closing oil producers leading to a considerable deferment due to water disposal restriction. Also, when the supply water is less than injection demand many WI wells start under injecting leading to low injection compliance. After SWIT was introduced in the cluster and all injectors started swinging in harmony via automatic control, it managed to balance the water system (controlled WI header pressure) regardless of the variation in produced water production. This resulted in increase of WI compliance by 5% after implementation. As SWIT optimized the water distribution to the injectors, roughly around 50 m3/d of additional oil production was achieved. It also minimized deferment from disposal restriction to a minimum level. All of this without the hustle of manual interventions.


2021 ◽  
Author(s):  
Bianca Lento ◽  
Yannick Aoustin ◽  
Teresa Zielinska

Abstract Robotic exoskeletons inspired by the animal’s external covering are wearable systems that enhance human power, motor skills, or support the movement. The main difficulty, apart from the mechanical structure design, is the development of an exoskeleton control system, as it should recognize the movement intended by the user and assist in its execution. This work is devoted to the exoskeleton of the upper limbs that supports movement. The method of controlling the exoskeleton by means of electromyograms (EMG) was presented. EMG is a technique for recording and assessing the electrical activity produced by skeletal muscles. The main advantage of EMG based control is the ability to forecast intended motion, even if the user is unable to generate it. This work aims to define strategies for controlling the exoskeleton of the upper limb in children suffering from neuromuscular diseases. Such diseases gradually reduce the mobility of the lower and upper limbs. These children are wheelchair bound, so it was assumed that the upper limb exoskeleton could be attached to a wheelchair. EMG signals are recorded, amplified and filtered. An artificial neural network using fuzzy logic to process EMG was used. This network predicts movement trajectories. Using this forecast and taking into account the feedback information, the control system generates the appropriate drive torques.


2021 ◽  
Vol 90 (1) ◽  
Author(s):  
Alessandro Alla ◽  
Carmen Gräßle ◽  
Michael Hinze

AbstractThe core of the Model Predictive Control (MPC) method in every step of the algorithm consists in solving a time-dependent optimization problem on the prediction horizon of the MPC algorithm, and then to apply a portion of the optimal control over the application horizon to obtain the new state. To solve this problem efficiently, we propose a time-adaptive residual based a-posteriori error control concept based on the optimality system of this optimal control problem. This approach not only delivers an adaptive time discretization of the prediction horizon, but also suggests an adaptive time discretization of the application horizon, whose length could be either adaptive or fixed. We apply this concept for systems governed by linear parabolic PDEs and present several numerical examples which demonstrate the performance and the robustness of our adaptive MPC control concept.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7726
Author(s):  
Charles Ikechukwu Odeh ◽  
Dmytro Kondratenko ◽  
Arkadiusz Lewicki ◽  
Marcin Morawiec ◽  
Andrzej Jąderko ◽  
...  

This article presents a carrier-based pulse-width modulation (PWM) template for a 5-level, H bridge-based cascaded multilevel inverter (MLI). The developed control concept generates adequate modulation template for this inverter topology wherein a sinusoidal modulating waveform is modified to fit in a single triangular carrier signal range. With this modulation approach, classical multiplicity and synchronization of the triangular carrier signals criterion for the extension of sinusoidal pulse-width modulation, SPWM, to several cascaded 5-level, H-bridge-based MLI topology are removed. The proposed template can be used on the inverter configuration of any level with no further control modification. Nearly even distribution of switching pulses and equalized individual cascaded cell output power were achieved with the proposed modulation scheme. Three 5-level, H-bridge-based MLI units were cascaded for 1-phase, 13-level inverter operation; simulation and experimental results are adequately presented.


Sign in / Sign up

Export Citation Format

Share Document