A continuum damage mechanics model for low-cycle fatigue failure of metalsWang, J. Eng. Fract. Mech. Feb. 1992 41, (3), 437–441

1993 ◽  
Vol 15 (1) ◽  
pp. 68-68
2006 ◽  
Vol 129 (1) ◽  
pp. 96-102 ◽  
Author(s):  
Masakazu Takagaki ◽  
Toshiya Nakamura

Numerical simulation of fatigue crack propagation based on fracture mechanics and the conventional finite element method requires a huge amount of computational resources when the cracked structure shows a complicated condition such as the multiple site damage or thermal fatigue. The objective of the present study is to develop a simulation technique for fatigue crack propagation that can be applied to complex situations by employing the continuum damage mechanics (CDM). An anisotropic damage tensor is defined to model a macroscopic fatigue crack. The validity of the present theory is examined by comparing the elastic stress distributions around the crack tip with those obtained by a conventional method. Combined with a nonlinear elasto-plastic constitutive equation, numerical simulations are conducted for low cycle fatigue crack propagation in a plate with one or two cracks. The results show good agreement with the experiments. Finally, propagations of multiply distributed cracks under low cycle fatigue loading are simulated to demonstrate the potential application of the present method.


2016 ◽  
Vol 835 ◽  
pp. 564-567
Author(s):  
Xin Tong Shi ◽  
Ying Chun Xiao ◽  
Hong Chen ◽  
Bo Huang

A continuum damage mechanics model was proposed to predict the high cycle fatigue life. In order to consider mean stress effects, the Walker correction was introduced in proposed model. The model was verified by experimental data on LC4 and LY12CZ aluminum alloy under high cycle fatigue loading. The results showed that the predicted life of proposed model well correlated with experimental data.


Sign in / Sign up

Export Citation Format

Share Document