Effects of different umbilical flow rates on placental transfer of compounds during in situ perfusion in the rabbit

Placenta ◽  
1991 ◽  
Vol 12 (4) ◽  
pp. 370-371
1991 ◽  
Vol 25 (4) ◽  
pp. 263-273 ◽  
Author(s):  
Daniela Omarini ◽  
Maria Monica Barzaco ◽  
Angela Bortolotti ◽  
José Aramayona ◽  
Maurizio Bonati

Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 719
Author(s):  
Anallely López-Yerena ◽  
Maria Pérez ◽  
Anna Vallverdú-Queralt ◽  
Eleftherios Miliarakis ◽  
Rosa M. Lamuela-Raventós ◽  
...  

Oleacein (OLEA) is one of the most important phenolic compounds in extra virgin olive oil in terms of concentration and health-promoting properties, yet there are insufficient data on its absorption and metabolism. Several non-human models have been developed to assess the intestinal permeability of drugs, among them, single-pass intestinal perfusion (SPIP), which is commonly used to investigate the trans-membrane transport of drugs in situ. In this study, the SPIP model and simultaneous luminal blood sampling were used to study the absorption and metabolism of OLEA in rats. Samples of intestinal fluid and mesenteric blood were taken at different times and the ileum segment was excised at the end of the experiment for analysis by LC–ESI–LTQ–Orbitrap–MS. OLEA was mostly metabolized by phase I reactions, undergoing hydrolysis and oxidation, and metabolite levels were much higher in the plasma than in the lumen. The large number of metabolites identified and their relatively high abundance indicates an important intestinal first-pass effect during absorption. According to the results, OLEA is well absorbed in the intestine, with an intestinal permeability similar to that of the highly permeable model compound naproxen. No significant differences were found in the percentage of absorbed OLEA and naproxen (48.98 ± 12.27% and 43.96 ± 7.58%, respectively).


2006 ◽  
Vol 3 (6) ◽  
pp. 686-694 ◽  
Author(s):  
Jae-Seung Kim ◽  
Stefanie Mitchell ◽  
Paul Kijek ◽  
Yasuhiro Tsume ◽  
John Hilfinger ◽  
...  

1972 ◽  
Vol 13 (2) ◽  
pp. 183-186 ◽  
Author(s):  
Hajime Iwahashi ◽  
Hiroshi Nagaya ◽  
Will C. Sealy
Keyword(s):  

2013 ◽  
Vol 11 (2) ◽  
pp. 267-276 ◽  
Author(s):  
Robert S. Donofrio ◽  
Sal Aridi ◽  
Ratul Saha ◽  
Robin Bechanko ◽  
Kevin Schaefer ◽  
...  

Obtaining an accurate assessment of a treatment system's antimicrobial efficacy in recreational water is difficult given the large scale and high flow rates of the water systems. A laboratory test system was designed to mimic the water conditions and potential microbial contaminants found in swimming pools. This system was utilized to evaluate the performance of an in situ ozone disinfection device against four microorganisms: Cryptosporidium parvum, bacteriophage MS2, Enterococcus faecium, and Pseudomonas aeruginosa. The sampling regimen evaluated the antimicrobial effectiveness in a single pass fashion, with samples being evaluated initially after exposure to the ozone unit, as well as at points downstream from the device. Based on the flow dynamics and log reductions, cycle threshold (Ct) values were calculated. The observed organism log reductions were as follows: >6.7 log for E. faecium and P. aeruginosa; >5.9 log for bacteriophage MS2; and between 2.7 and 4.1 log for C. parvum. The efficacy results indicate that the test system effectively functions as a secondary disinfection system as defined by the Centers for Disease Control and Prevention's Model Aquatic Health Code.


1995 ◽  
Vol 90 (1-2) ◽  
pp. 151-158 ◽  
Author(s):  
Hameed Al-Sarraf ◽  
Jane E. Preston ◽  
Malcolm B. Segal

Sign in / Sign up

Export Citation Format

Share Document