Evaluation of terrain effects in AEM surveys using the boundary element method

Geophysics ◽  
1992 ◽  
Vol 57 (2) ◽  
pp. 272-278 ◽  
Author(s):  
Guimin Liu ◽  
Alex Becker

In mountainous areas, electromagnetic terrain effects are readily observed in the course of VLF (14–20 kHz) measurements made on the surface and constitute a serious source of geological noise that affects the collected data. One may, therefore, inquire whether similar effects will be observed during the course of conventional helicopter‐towed electromagnetic (HEM) surveys as the frequency of the newer systems is increased beyond the lower regions of the audio range. To answer the question, we have evaluated the terrain effects that would be observed with a conventional HEM system in a number of simple cases. The operating frequency chosen for most of the numerical simulations was 8 kHz, while the topographic features investigated were taken to be two‐dimensional. The calculations were done using the boundary element method of solving the appropriate integral equations. Accuracy of the numerical solutions was shown to vary from 1 percent for a half space to 10 percent for a shallow valley where the verification was done on a laboratory scale model. For the models investigated, the amplitude of the computed secondary fields shows a distinct correlation with the overflown topography. Surprisingly, however, the phase of the secondary field remains invariant and so may be reliably used to compute the resistivity of the terrain below the aircraft.


1995 ◽  
Vol 5 (6) ◽  
pp. 621-638 ◽  
Author(s):  
J. H. Hilbing ◽  
Stephen D. Heister ◽  
C. A. Spangler

1993 ◽  
Vol 21 (2) ◽  
pp. 66-90 ◽  
Author(s):  
Y. Nakajima ◽  
Y. Inoue ◽  
H. Ogawa

Abstract Road traffic noise needs to be reduced, because traffic volume is increasing every year. The noise generated from a tire is becoming one of the dominant sources in the total traffic noise because the engine noise is constantly being reduced by the vehicle manufacturers. Although the acoustic intensity measurement technology has been enhanced by the recent developments in digital measurement techniques, repetitive measurements are necessary to find effective ways for noise control. Hence, a simulation method to predict generated noise is required to replace the time-consuming experiments. The boundary element method (BEM) is applied to predict the acoustic radiation caused by the vibration of a tire sidewall and a tire noise prediction system is developed. The BEM requires the geometry and the modal characteristics of a tire which are provided by an experiment or the finite element method (FEM). Since the finite element procedure is applied to the prediction of modal characteristics in a tire noise prediction system, the acoustic pressure can be predicted without any measurements. Furthermore, the acoustic contribution analysis obtained from the post-processing of the predicted results is very helpful to know where and how the design change affects the acoustic radiation. The predictability of this system is verified by measurements and the acoustic contribution analysis is applied to tire noise control.


AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 1080-1081
Author(s):  
Giuseppe Davi ◽  
Rosario M. A. Maretta ◽  
Alberto Milazzo

Sign in / Sign up

Export Citation Format

Share Document