Comprehensive effect coefficients calculating method for lateral bearing capacity of pile groups

2019 ◽  
Vol 23 (12) ◽  
pp. 5041-5050
Author(s):  
Gangqiang Kong ◽  
Huaifeng Peng ◽  
Hongyu Qin ◽  
Lehua Wang ◽  
Yongdong Meng

1981 ◽  
Vol 18 (2) ◽  
pp. 297-300 ◽  
Author(s):  
G. G. Meyerhof

The ultimate bearing capacity of rigid vertical and batter piles and pile groups in clay has been determined under various inclinations of the load, varying from the vertical to horizontal directions. The results of load tests on single model piles of different lengths and inclinations and on free-standing groups and piled foundations are compared with theoretical estimates. The influence of load inclination on the bearing capacity can be represented by simple interaction relationships between the axial and normal components of the ultimate load. The effect of eccentricity of the load on the ultimate bearing capacity of pile groups is discussed on the basis of previous theory and model test results.


1963 ◽  
Vol 1 (1) ◽  
pp. 16-26 ◽  
Author(s):  
George Geoffrey Meyerhof

The first part of the paper summarizes the results of recent research on the bearing capacity of spread foundations of various shapes under a central vertical load and outlines the effects of foundation depth, eccentricity and inclination of the load. Simple formulae have been derived for use in practice and their application to the design of rigid and flexible foundations is briefly indicated.The second part of the paper discusses the bearing capacity of single piles under vertical and inclined loads. The bearing capacity of piled foundations and free-standing pile groups is outlined, and the results of model tests on pile groups under central and eccentric loads are briefly analysed in relation to some problems in practice.


2017 ◽  
Vol 7 (5) ◽  
pp. 1894-1899
Author(s):  
A. Firoozfar ◽  
A. Rostami ◽  
H. Ghaderi ◽  
H. Zamani ◽  
A. Rostamkhani

Piles are usually made of steel, concrete, reinforced concrete or wood, used to enhance the ground’s bearing capacity in order to enable the construction of deep foundations, also called pile foundations. However, the exact effect of the complex interaction between the piles and the surrounding soil has not adequately been investigated yet. Considering the increased application of the technique recently, further analysis is essential for achieving the highest economic and technical capacity. Using fewer piles or shorter piles and allowing greater distances between pile groups, results to reduced construction. However, other restrictions such as high groundwater level, bedrock depth and the limited size of the foundation are also to be considered. The issue of optimal pile layout is further investigated in the current paper employing Plaxis, a finite element software, for modeling purposes and considering axial loadings in granular soils. Results are shown and further discussed.


2021 ◽  
Vol 21 (10) ◽  
pp. 04021200
Author(s):  
Shan-wei Liu ◽  
Qian-qing Zhang ◽  
Ruo-feng Feng

1989 ◽  
Vol 26 (1) ◽  
pp. 34-42 ◽  
Author(s):  
G. G. Meyerhof ◽  
D. P. Ghosh

The ultimate bearing capacity of flexible single model piles and small pile groups of timber and nylon in loose sand and soft clay has been determined under various combinations of eccentricity and inclination of the load varying in direction from vertical to horizontal. The results of the load tests are presented in the form of polar bearing capacity diagrams and they are compared with the theoretical estimates based on the concept of an effective embedment depth in terms of the behaviour of equivalent rigid piles. Reasonable agreement has been found between the observed and predicted ultimate bearing capacity of flexible piles under any combination of eccentricity and inclination of loads. Key words: flexible piles, pile groups, ultimate bearing capacity, ultimate moment, model test, eccentric load, inclined load, sand, clay.


Sign in / Sign up

Export Citation Format

Share Document