Radiative properties of snow for clear sky solar radiation

1981 ◽  
Vol 4 (2) ◽  
pp. 103-120 ◽  
Author(s):  
Bhaskar Choudhury
2015 ◽  
Vol 14 (11) ◽  
pp. 2007-2013 ◽  
Author(s):  
Nadia Diovisalvi ◽  
Armando M. Rennella ◽  
Horacio E. Zagarese

A schematic representation of the seasonal cycle of rotifer in L. Chascomús. In this figure the relative abundances of the three dominant rotifer species are expressed as fractions of the estimated clear-sky mean daily incident solar radiation.


2007 ◽  
Vol 7 (3) ◽  
pp. 7171-7233 ◽  
Author(s):  
P. Stier ◽  
J. H. Seinfeld ◽  
S. Kinne ◽  
O. Boucher

Abstract. We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006) significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the short-wave anthropogenic aerosol top-of-atmosphere (TOA) radiative forcing clear-sky from –0.79 to –0.53 W m−2 (33%) and all-sky from –0.47 to –0.13 W m−2 (72%). Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19 W m−2 (36%) clear-sky and of 0.12 W m−2 (92%) all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05 W m−2 and a positive TOA forcing perturbation of 0.02 W m−2. The long-wave aerosol radiative effects are small for anthropogenic aerosols but become of relevance for the larger natural dust and sea-salt aerosols.


2021 ◽  
Author(s):  
Yvette Gramlich ◽  
Sophie Haslett ◽  
Karolina Siegel ◽  
Gabriel Freitas ◽  
Radovan Krejci ◽  
...  

<p>The number of cloud seeds, e.g. cloud condensation nuclei (CCN) and ice nucleation particles (INP), in the pristine Arctic shows a large range throughout the year, thereby influencing the radiative properties of Arctic clouds. However, little is known about the chemical properties of CCN and INP in this region. This study aims to investigate the chemical properties of aerosol particles and trace gases that are of importance for cloud formation in the Arctic environment, with focus on the organic fraction.</p><p>Over the course of one full year (fall 2019 until fall 2020), we deployed a filter-inlet for gases and aerosols coupled to a chemical ionization high-resolution time-of-flight mass spectrometer (FIGAERO-CIMS) using iodide as reagent ion at the Zeppelin Observatory in Svalbard (480 m a.s.l.), as part of the Ny-Ålesund Aerosol Cloud Experiment (NASCENT). The FIGAERO-CIMS is able to measure organic trace gases and aerosol particles semi-simultaneously. The instrument was connected to an inlet switching between a counterflow virtual impactor (CVI) inlet and a total air inlet. This setup allows to study the differences in chemical composition of organic aerosol particles and trace gases at molecular level that are involved in Arctic cloud formation compared to ambient non-activated aerosol.</p><p>We observed organic signal above background in both gas and particle phase all year round. A comparison between the gas phase mass spectra of cloud-free and cloudy conditions shows lower signal for some organics inside the cloud, indicating that some trace gases are scavenged by cloud hydrometeors whilst others are not. In this presentation we will discuss the chemical characteristics of the gases exhibiting different behavior during clear sky and cloudy conditions, and the implications for partitioning of organic compounds between the gas, aerosol particle and cloud hydrometeor (droplet/ice) phase.</p>


2019 ◽  
Vol 12 (2) ◽  
pp. 1183-1206 ◽  
Author(s):  
Florian Ewald ◽  
Tobias Zinner ◽  
Tobias Kölling ◽  
Bernhard Mayer

Abstract. Convective clouds play an essential role for Earth's climate as well as for regional weather events since they have a large influence on the radiation budget and the water cycle. In particular, cloud albedo and the formation of precipitation are influenced by aerosol particles within clouds. In order to improve the understanding of processes from aerosol activation, from cloud droplet growth to changes in cloud radiative properties, remote sensing techniques become more and more important. While passive retrievals for spaceborne observations have become sophisticated and commonplace for inferring cloud optical thickness and droplet size from cloud tops, profiles of droplet size have remained largely uncharted territory for passive remote sensing. In principle they could be derived from observations of cloud sides, but faced with the small-scale heterogeneity of cloud sides, “classical” passive remote sensing techniques are rendered inappropriate. In this work the feasibility is demonstrated to gain new insights into the vertical evolution of cloud droplet effective radius by using reflected solar radiation from cloud sides. Central aspect of this work on its path to a working cloud side retrieval is the analysis of the impact unknown cloud surface geometry has on effective radius retrievals. This study examines the sensitivity of reflected solar radiation to cloud droplet size, using extensive 3-D radiative transfer calculations on the basis of realistic droplet size resolving cloud simulations. Furthermore, it explores a further technique to resolve ambiguities caused by illumination and cloud geometry by considering the surroundings of each pixel. Based on these findings, a statistical approach is used to provide an effective radius retrieval. This statistical effective radius retrieval is focused on the liquid part of convective water clouds, e.g., cumulus mediocris, cumulus congestus, and trade-wind cumulus, which exhibit well-developed cloud sides. Finally, the developed retrieval is tested using known and unknown cloud side scenes to analyze its performance.


2000 ◽  
Vol 21 (2) ◽  
pp. 271-287 ◽  
Author(s):  
Inci Turk Toğrul ◽  
Hasan Toğrul ◽  
Duygu Evin

Sign in / Sign up

Export Citation Format

Share Document