Isochromosome 17q in cell lines of two cases of B cell chronic lymphocytic leukemia

1983 ◽  
Vol 9 (3) ◽  
pp. 227-232 ◽  
Author(s):  
M. Vahdati ◽  
H. Graafland ◽  
J.M. Emberger
Blood ◽  
1993 ◽  
Vol 82 (6) ◽  
pp. 1820-1828 ◽  
Author(s):  
M Hanada ◽  
D Delia ◽  
A Aiello ◽  
E Stadtmauer ◽  
JC Reed

Abstract The bcl-2 gene becomes transcriptionally deregulated in the majority of low-grade non-Hodgkin lymphomas as a result of t(14;18) translocations that place the bcl-2 gene at 18q21 into juxtaposition with the Ig heavy- chain locus at 14q32. This chromosomal translocation or similar bcl-2 gene rearrangements involving the Ig light-chain genes have been reported to occur in some cases of B-cell chronic lymphocytic leukemia (B-CLL). We analyzed the structure, methylation, and expression of the bcl-2 gene in 20 cases of B-CLL or closely related variants of this lymphoproliferative disorder, including at least 16 typical examples of CD5+ B-CLL. None of the 20 specimens had evidence of bcl-2 gene rearrangements, based on Southern blot analysis using three different bcl-2 probes. However, immunoblot analysis using antibodies specific for the Bcl-2 protein showed that 14 of 20 cases (70%) contained levels of p26-Bcl-2 that were equal to or greater than those found in a t(14;18)-bearing lymphoma cell line. Furthermore, in 19 of 20 cases (95%), the Bcl-2 protein was present at levels that were 1.7- to 25- fold higher than in normal peripheral blood lymphocytes. These differences in the relative levels of Bcl-2 protein among cases of B- CLL appeared to be functionally significant, in that a preliminary analysis of 3 representative cases showed that CLL cells with higher levels of Bcl-2 protein survived longer in culture and were delayed in their onset of DNA degradation relative to CLL cells with lower Bcl-2 protein levels. Evaluation of the methylation status of the bcl-2 gene using the isoschizomers Msp I and Hpa II, and a probe corresponding to the first major exon of the gene showed complete demethylation of both copies of the bcl-2 gene in a region corresponding to a 2.4-kb Msp I fragment in all 20 cases of B-CLL. In contrast, analysis of 6 of 6 B- cell lines that harbor a t(14;18) was consistent with hypomethylation of only one of the two bcl-2 alleles. Neither copy of the bcl-2 gene was demethylated in this region in 5 of 5 lymphoid cell lines that lack this translocation. However, hypomethylation of the bcl-2 gene did not necessarily correlate with the relative levels of Bcl-2 protein present in the B-CLL cells, suggesting that additional mechanisms for regulating bcl-2 expression are involved.(ABSTRACT TRUNCATED AT 400 WORDS)


Blood ◽  
1993 ◽  
Vol 82 (6) ◽  
pp. 1820-1828 ◽  
Author(s):  
M Hanada ◽  
D Delia ◽  
A Aiello ◽  
E Stadtmauer ◽  
JC Reed

The bcl-2 gene becomes transcriptionally deregulated in the majority of low-grade non-Hodgkin lymphomas as a result of t(14;18) translocations that place the bcl-2 gene at 18q21 into juxtaposition with the Ig heavy- chain locus at 14q32. This chromosomal translocation or similar bcl-2 gene rearrangements involving the Ig light-chain genes have been reported to occur in some cases of B-cell chronic lymphocytic leukemia (B-CLL). We analyzed the structure, methylation, and expression of the bcl-2 gene in 20 cases of B-CLL or closely related variants of this lymphoproliferative disorder, including at least 16 typical examples of CD5+ B-CLL. None of the 20 specimens had evidence of bcl-2 gene rearrangements, based on Southern blot analysis using three different bcl-2 probes. However, immunoblot analysis using antibodies specific for the Bcl-2 protein showed that 14 of 20 cases (70%) contained levels of p26-Bcl-2 that were equal to or greater than those found in a t(14;18)-bearing lymphoma cell line. Furthermore, in 19 of 20 cases (95%), the Bcl-2 protein was present at levels that were 1.7- to 25- fold higher than in normal peripheral blood lymphocytes. These differences in the relative levels of Bcl-2 protein among cases of B- CLL appeared to be functionally significant, in that a preliminary analysis of 3 representative cases showed that CLL cells with higher levels of Bcl-2 protein survived longer in culture and were delayed in their onset of DNA degradation relative to CLL cells with lower Bcl-2 protein levels. Evaluation of the methylation status of the bcl-2 gene using the isoschizomers Msp I and Hpa II, and a probe corresponding to the first major exon of the gene showed complete demethylation of both copies of the bcl-2 gene in a region corresponding to a 2.4-kb Msp I fragment in all 20 cases of B-CLL. In contrast, analysis of 6 of 6 B- cell lines that harbor a t(14;18) was consistent with hypomethylation of only one of the two bcl-2 alleles. Neither copy of the bcl-2 gene was demethylated in this region in 5 of 5 lymphoid cell lines that lack this translocation. However, hypomethylation of the bcl-2 gene did not necessarily correlate with the relative levels of Bcl-2 protein present in the B-CLL cells, suggesting that additional mechanisms for regulating bcl-2 expression are involved.(ABSTRACT TRUNCATED AT 400 WORDS)


2006 ◽  
Vol 12 (4) ◽  
pp. 187-192
Author(s):  
F. Scamardella ◽  
M. Maconi ◽  
L. Albertazzi ◽  
B. Gamberi ◽  
L. Gugliotta ◽  
...  

Author(s):  
Alessandro Pileri ◽  
Carlotta Baraldi ◽  
Alessandro Broccoli ◽  
Roberto Maglie ◽  
Annalisa Patrizi ◽  
...  

2001 ◽  
Vol 194 (11) ◽  
pp. 1639-1648 ◽  
Author(s):  
Andreas Rosenwald ◽  
Ash A. Alizadeh ◽  
George Widhopf ◽  
Richard Simon ◽  
R. Eric Davis ◽  
...  

The most common human leukemia is B cell chronic lymphocytic leukemia (CLL), a malignancy of mature B cells with a characteristic clinical presentation but a variable clinical course. The rearranged immunoglobulin (Ig) genes of CLL cells may be either germ-line in sequence or somatically mutated. Lack of Ig mutations defined a distinctly worse prognostic group of CLL patients raising the possibility that CLL comprises two distinct diseases. Using genomic-scale gene expression profiling, we show that CLL is characterized by a common gene expression “signature,” irrespective of Ig mutational status, suggesting that CLL cases share a common mechanism of transformation and/or cell of origin. Nonetheless, the expression of hundreds of other genes correlated with the Ig mutational status, including many genes that are modulated in expression during mitogenic B cell receptor signaling. These genes were used to build a CLL subtype predictor that may help in the clinical classification of patients with this disease.


2021 ◽  
Author(s):  
Francesca Magrinelli ◽  
Sara Mariotto ◽  
Gianpaolo Nadali ◽  
Giuseppe Todeschini ◽  
Massimiliano Lanzafame ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document