On the use of “pseudo-atoms” in cluster calculations for modelling molecular fragments, solids and surfaces

1988 ◽  
Vol 181 (3-4) ◽  
pp. 335-343 ◽  
Author(s):  
M. Révész ◽  
I. Bertóti ◽  
G. Mink ◽  
I. Mayer
2020 ◽  
Author(s):  
David Zanders ◽  
Goran Bačić ◽  
Dominique Leckie ◽  
Oluwadamilola Odegbesan ◽  
Jeremy M. Rawson ◽  
...  

Attempted preparation of a chelated Co(II) β-silylamide re-sulted in the unprecedented disproportionation to Co(0) and a spirocyclic cobalt(IV) bis(β-silyldiamide): [Co[(NtBu)2SiMe2]2] (1). Compound 1 exhibits a room temperature magnetic moment of 1.8 B.M and a solid state axial EPR spectrum diagnostic of a rare S = 1/2 configuration. Semicanonical coupled-cluster calculations (DLPNO-CCSD(T)) revealed the doublet state was clearly preferred (–27 kcal/mol) over higher spin configurations for which density functional theory (DFT) showed no energetic preference. Unlike other Co(IV) complexes, 1 had remarkable thermal stability, and was demonstrated to form a stable self-limiting monolayer in initial atomic layer deposition (ALD) surface saturation tests. The ease of synthesis and high-stability make 1 an attractive starting point to begin investigating otherwise inaccessible Co(IV) intermediates and synthesizing new materials.


2020 ◽  
Author(s):  
Julia Villalva ◽  
Belén Nieto-Ortega ◽  
Manuel Melle-Franco ◽  
Emilio Pérez

The motion of molecular fragments in close contact with atomically flat surfaces is still not fully understood. Does a more favourable interaction imply a larger barrier towards motion even if there are no obvious minima? Here, we use mechanically interlocked rotaxane-type derivatives of SWNTs (MINTs) featuring four different types of macrocycles with significantly different affinities for the SWNT thread as models to study this problem. Using molecular dynamics, we find that there is no direct correlation between the interaction energy of the macrocycle with the SWNT and its ability to move along or around it. Density functional tight-binding calculations reveal small (<2.5 Kcal·mol-1) activation barriers, the height of which correlates with the commensurability of the aromatic moieties in the macrocycle with the SWNT. Our results show that macrocycles in MINTs rotate and translate freely around and along SWNTs at room temperature, with an energetic cost lower than the rotation around the C−C bond in ethane.<br>


2018 ◽  
Vol 59 (3) ◽  
Author(s):  
S.A. Shutkova ◽  
◽  
M.Yu. Dolomatov ◽  
M.M. Dolomatova ◽  
A.M. Petrov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document