Kinematical theory of spiral waves in excitable media: Comparison with numerical simulations

1991 ◽  
Vol 52 (2-3) ◽  
pp. 379-397 ◽  
Author(s):  
A.S. Mikhailov ◽  
V.S. Zykov
1999 ◽  
Vol 09 (04) ◽  
pp. 695-704 ◽  
Author(s):  
V. N. BIKTASHEV ◽  
A. V. HOLDEN ◽  
S. F. MIRONOV ◽  
A. M. PERTSOV ◽  
A. V. ZAITSEV

Ventricular fibrillation is believed to be produced by the breakdown of re-entrant propagation waves of excitation into multiple re-entrant sources. These re-entrant waves may be idealized as spiral waves in two-dimensional, and scroll waves in three-dimensional excitable media. Optically monitored, simultaneously recorded endocardial and epicardial patterns of activation on the ventricular wall do not always show spiral waves. We show that numerical simulations, even with a simple homogeneous excitable medium, can reproduce the key features of the simultaneous endo- and epicardial visualizations of propagating activity, and so these recordings may be interpreted in terms of scroll waves within the ventricular wall.


2016 ◽  
Vol 26 (14) ◽  
pp. 1650236
Author(s):  
Guiquan Liu ◽  
Heping Ying ◽  
Honglei Luo ◽  
Xiaoxia Liu ◽  
Jinghua Yang

Lowered excitability leads to unstable meandering of spiral tip, which result in breakup of spiral waves into chaotic states induced by Doppler effects. This phenomenon is responsible for the transition from tachycardia to ventricular fibrillation in cardiac tissues. Numerical simulations show that low-energy local periodic forcing (LPF) applied around spiral tip can efficiently suppress the meandering behavior and consequently prevent spiral breakup. The controllable phase diagrams that describe the amplitude and period of LPF against excitability parameter are presented to illustrate the control region. The underlying mechanism of suppressing spiral meandering behavior is explored by greatly decreasing the radius of the meandering tip. The proposed scheme can potentially contribute to controlling cardiac arrhythmia.


2008 ◽  
Vol 22 (24) ◽  
pp. 4153-4161 ◽  
Author(s):  
YU QIAN ◽  
YU XUE ◽  
GUANG-ZHI CHEN

A unidirectional coupling method to successfully suppress spiral waves in excitable media is proposed. It is shown that this control method has high control efficiency and is robust. It adapts to control of spiral waves for catalytic CO oxidation on platinum as well as for the FHN model. The power law n ~ c-k of control time steps n versus the coupling strength c for different models has been obtained.


2011 ◽  
Vol 44 (9) ◽  
pp. 728-738 ◽  
Author(s):  
Guoyong Yuan ◽  
Lin Xu ◽  
Aiguo Xu ◽  
Guangrui Wang ◽  
Shiping Yang

2018 ◽  
Author(s):  
Guy Malki ◽  
Sharon Zlochiver

ABSTRACTCardiac rotors are believed to be a major driver source of persistent atrial fibrillation (AF), and their spatiotemporal characterization is essential for successful ablation procedures. However, electrograms guided ablation have not been proven to have benefit over empirical ablation thus far, and there is a strong need of improving the localization of cardiac arrhythmogenic targets for ablation. A new approach for characterize rotors is proposed that is based on induced spatial temperature gradients (STGs), and investigated by theoretical study using numerical simulations. We hypothesize that such gradients will cause rotor drifting due to induced spatial heterogeneity in excitability, so that rotors could be driven towards the ablating probe. Numerical simulations were conducted in single cell and 2D atrial models using AF remodeled kinetics. STGs were applied either linearly on the entire tissue or as a small local perturbation, and the major ion channel rate constants were adjusted following Arrhenius equation. In the AF-remodeled single cell, recovery time increased exponentially with decreasing temperatures, despite the marginal effect of temperature on the action potential duration. In 2D models, spiral waves drifted with drifting velocity components affected by both temperature gradient direction and the spiral wave rotation direction. Overall, spiral waves drifted towards the colder tissue region associated with global minimum of excitability. A local perturbation with a temperature of T=28°C was found optimal for spiral wave attraction for the studied conditions. This work provides a preliminary proof-of-concept for a potential prospective technique for rotor attraction. We envision that the insights from this study will be utilize in the future in the design of a new methodology for AF characterization and termination during ablation procedures.


2010 ◽  
Vol 104 (5) ◽  
Author(s):  
V. N. Biktashev ◽  
D. Barkley ◽  
I. V. Biktasheva

2021 ◽  
Author(s):  
Karthikeyan Rajagopal ◽  
Irene Moroz ◽  
Balamurali Ramakrishnan ◽  
Anitha Karthikeyan ◽  
Prakash Duraisamy

Abstract A Morris-Lecar neuron model is considered with Electric and Magnetic field effects where the electric field is a time varying sinusoid and magnetic field is simulated using an exponential flux memristor. We have shown that the exposure to electric and magnetic fields have significant effects on the neurons and have exhibited complex oscillations. The neurons exhibit a frequency-locked state for the periodic electric field and different ratios of frequency locked states with respect to the electric field frequency is also presented. To show the impact of the electric and magnetic fields on network of neurons, we have constructed different types of network and have shown the network wave propagation phenomenon. Interestingly the nodes exposed to both electric and magnetic fields exhibit more stable spiral waves compared to the nodes exhibited only to the magnetic fields. Also, when the number of layers are increased the range of electric field frequency for which the layers exhibit spiral waves also increase. Finally the noise effects on the field affected neuron network are discussed and multilayer networks supress spiral waves for a very low noise variance compared against the single layer network.


2020 ◽  
Vol 101 (3) ◽  
Author(s):  
Jinming Luo ◽  
Teng-Chao Li ◽  
Hong Zhang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document