Cell line-specific transcriptional activation of the promoter of the human guanylyl cyclase C/heat-stable enterotoxin receptor gene

Author(s):  
Elizabeth A. Mann ◽  
Mary Lynn Jump ◽  
Ralph A. Giannella
1997 ◽  
Vol 4 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Makoto Hasegawa ◽  
Yuki Kawano ◽  
Kazuya Matsumoto ◽  
Yuji Hidaka ◽  
Takashi Sato ◽  
...  

2002 ◽  
Vol 277 (25) ◽  
pp. 22934-22941 ◽  
Author(s):  
Robert O. Scott ◽  
William R. Thelin ◽  
Sharon L. Milgram

2002 ◽  
Vol 283 (3) ◽  
pp. G695-G702 ◽  
Author(s):  
Jeffrey A. Rudolph ◽  
Jennifer A. Hawkins ◽  
Mitchell B. Cohen

The mechanisms of proguanylin synthesis and secretion in the intestine are incompletely understood. We designed an in vitro model to study proguanylin secretion in a model of intestinal villous epithelial cells. The C2/bbe1 cell line, a differentiated subclone of Caco-2 cells, was used to examine the direction of proguanylin secretion and the potential for feedback regulation via activators of the guanylyl cyclase C signal transduction pathway. When cells were grown on Transwell inserts, proguanylin was secreted into the apical and basolateral media, consistent with other models of intestinal guanylin secretion. Proguanylin synthesis and secretion were not decreased on activation of guanylyl cyclase C-mediated chloride secretion, implying a regulatory system other than negative-feedback inhibition. These data describe the use of C2/bbe1 cells as a model for proguanylin secretion in villous epithelial cells and demonstrate their potential use for the study of the regulatory mechanisms governing proguanylin synthesis and secretion.


1997 ◽  
Vol 272 (6) ◽  
pp. C1995-C2004 ◽  
Author(s):  
L. A. Scheving ◽  
K. M. Chong

Many strains of enterotoxigenic Escherichia coli produce a heat-stable peptide enterotoxin (STa) that binds to the intestinal receptor guanylyl cyclase C (GC-C). STa receptors are structurally heterogeneous, but the molecular events causing this heterogeneity remain obscure. We examined the influence of cell position along the villus-crypt axis on STa receptor heterogeneity by fractionating EDTA-dissociated cells that detached in a villus-to-crypt direction. STa affinity labeling experiments revealed that the initially released villus “tip” fraction had four major STa binding proteins (STBPs), with relative molecular weight (M(r)) of 150,000, 135,000, 125,000, and 95,000, that did not react with a GC-C carboxy-terminal antibody. Yet succeeding villus cell fractions had major immunoreactive STBPs with M(r) of 275,000 and 250,000. Limited proteolysis of these larger GC-C isoforms produced 1) smaller STBPs that had M(r) similar to those in the initial villus fraction, 2) a 65,000 M(r) protein GC-C isoform that did not bind STa, and 3) elevated basal and STa-induced cyclase activity. Our data show that STBP structural heterogeneity in the intact intestine arises largely from multisite proteolytic processing of GC-C.


Sign in / Sign up

Export Citation Format

Share Document