Alcohol dehydrogenase from the fruitfly Drosophila melanogaster Substrate specificity of the alleloenzymes AdhS and AdhUF

Author(s):  
Jan-Olof Winberg ◽  
David R. Thatcher ◽  
John S. McKinley-McKee
1981 ◽  
Vol 34 (6) ◽  
pp. 625 ◽  
Author(s):  
GK Chambers ◽  
AV Wilks ◽  
JB Gibson

The biochemical properties of the heat-stable alcohol dehydrogenase variant ADH-FCh.D. have been investigated and compared with those of the two common enzyme forms ADH-F and ADH-S. The results show that ADH-F and ADH-S differ with respect to substrate specificity, their response to high concentrations of secondary alcohols and their apparent Michaelis constants for three alcohols in two different buffer systems. In all these tests the enzyme ADH-FCh.D. resembles ADH-S much more closely than ADH-F.


1998 ◽  
Vol 329 (3) ◽  
pp. 561-570 ◽  
Author(s):  
Jan-Olof WINBERG ◽  
John S. McKINLEY-McKEE

Drosophila alcohol dehydrogenase (Adh) catalyses the oxidation of both alcohols and aldehydes. In the latter case, the oxidation is followed by a reduction of the aldehyde, i.e. a dismutation reaction. At high pH, dismutation is accompanied by a small release of NADH, which is not observed at neutral pH. Previously it has been emphasized that kinetic coefficients obtained by measuring the increase in A340, i.e. the release of NADH at high pH is not a direct measure of the aldehyde oxidation reaction and these values cannot be compared with those for alcohol dehydrogenation. In this article we demonstrate that this is not entirely true, and that the coefficients ϕB and ϕAB, where B is the aldehyde and A is NAD+, are the same for a dismutation reaction and a simple aldehyde dehydrogenase reaction. Thus the substrate specificity of the aldehyde oxidation reaction can be determined by simply measuring the NADH release. The coefficients for oxidation and dehydrogenation reactions (ɸ0d and ϕAd respectively) are complex and involve the constants for the dismutation reaction. However, dead-end inhibitors can be used to determine the quantitative contribution of the kinetic constants for the aldehyde oxidation and reduction pathways to the ϕ0d and ϕAd coefficients. The combination of dead-end and product inhibitors can be used to determine the reaction mechanism for the aldehyde oxidation pathway. Previously, we showed that with Drosophila Adh, the interconversion between alcohols and aldehydes followed a strictly compulsory ordered pathway, although aldehydes and ketones formed binary complexes with the enzyme. This raised the question regarding the reaction mechanism for the oxidation of aldehydes, i.e. whether a random ordered pathway was followed. In the present work, the mechanism for the oxidation of different aldehydes and the accompanying dismutation reaction with the slow alleloenzyme (AdhS) from Drosophila melanogaster has been studied. To obtain reliable results for the liberation of NADH during the initial-rate phase, the reaction was measured with a sensitive recording filter fluorimeter, and the complexes formed with the different dead-end and product inhibitors have been interpreted on the basis of a full dismutation reaction. The results are only consistent with a compulsory ordered reaction mechanism, with the formation of a dead-end binary enzyme-aldehyde complex. Under initial-velocity conditions, the rate of acetate release was calculated to be larger than 2.5 s-1, which is more than ten times that of NADH. The substrate specificity constant (kcat/Km or 1/ϕB) with respect to the oxidation of substrates was propan-2-ol > ethanol > acetaldehyde > trimethylacetaldehyde.


Genetics ◽  
1996 ◽  
Vol 143 (2) ◽  
pp. 897-911 ◽  
Author(s):  
S McNabb ◽  
S Greig ◽  
T Davis

Abstract This report describes the structure and expression of the outspread (osp) gene of Drosophila melanogaster. Previous work showed that chromosomal breakpoints associated with mutations of the osp locus map to both sides of the alcohol dehydrogenase gene (Adh), suggesting that Adh and the adjacent gene Adh' are nested in osp. We extended a chromosomal walk and mapped additional osp mutations to define the maximum molecular limit of osp as 119 kb. We identified a 6-kb transcript that hybridizes to osp region DNA and is altered or absent in osp mutants. Accumulation of this RNA peaks during embryonic and pupal periods. The osp cDNAs comprise two distinct classes based on alternative splicing patterns. The 5′ end of the longest cDNA was extended by PCR amplification. When hybridized to the osp walk, the 5′ extension verifies that Adh and Adh' are nested in osp and shows that osp has a transcription unit of ≥74 kb. In situ hybridization shows that osp is expressed both maternally and zygotically. In the ovary, osp is transcribed in nurse cells and localized in the oocyte. In embryos, expression is most abundant in the developing visceral and somatic musculature.


Genetics ◽  
1978 ◽  
Vol 89 (2) ◽  
pp. 371-388
Author(s):  
John F McDonald ◽  
Francisco J Ayala

ABSTRACT Recent studies by various authors suggest that variation in gene regulation may be common in nature, and might be of great evolutionary consequence; but the ascertainment of variation in gene regulation has proven to be a difficult problem. In this study, we explore this problem by measuring alcohol dehydrogenase (ADH) activity in Drosophila melanogaster strains homozygous for various combinations of given second and third chromosomes sampled from a natural population. The structural locus (Adh) coding for ADH is on the second chromosome. The results show that: (1) there are genes, other than Adh, that affect the levels of ADH activity; (2) at least some of these "regulatory" genes are located on the third chromosome, and thus are not adjacent to the Adh locus; (3) variation exists in natural populations for such regulatory genes; (4) the effect of these regulatory genes varies as they interact with different second chromosomes; (5) third chromosomes with high-activity genes are either partially or completely dominant over chromosomes with low-activity genes; (6) the effects of the regulatory genes are pervasive throughout development; and (7) the third chromosome genes regulate the levels of ADH activity by affecting the number of ADH molecules in the flies. The results are consistent with the view that the evolution of regulatory genes may play an important role in adaptation.


ChemBioChem ◽  
2015 ◽  
Vol 16 (10) ◽  
pp. 1512-1519 ◽  
Author(s):  
Christoph Loderer ◽  
Gaurao V. Dhoke ◽  
Mehdi D. Davari ◽  
Wolfgang Kroutil ◽  
Ulrich Schwaneberg ◽  
...  

Nature ◽  
1979 ◽  
Vol 280 (5722) ◽  
pp. 517-518 ◽  
Author(s):  
BRYAN CLARKE ◽  
ROBERT G. CAMFIELD ◽  
ALISON M. GALVIN ◽  
CHRISTOPHER R. PITTS

1974 ◽  
Vol 11 (2) ◽  
pp. 141-153 ◽  
Author(s):  
Thomas H. Day ◽  
P. C. Hillier ◽  
Bryan Clarke

1979 ◽  
Vol 32 (3) ◽  
pp. 387 ◽  
Author(s):  
John B Gibson ◽  
NigeI Lewis ◽  
MichaeI Adena ◽  
Susan R Wilson

Selection for ethanol tolerance was equally successful in two populations of D. melanogaster in both of which the frequency of AdhF was 0�5 at the start of the experiment.


Sign in / Sign up

Export Citation Format

Share Document