regulatory genes
Recently Published Documents


TOTAL DOCUMENTS

1120
(FIVE YEARS 223)

H-INDEX

86
(FIVE YEARS 7)

2023 ◽  
Vol 83 ◽  
Author(s):  
M. K. Warsi ◽  
S. M. Howladar ◽  
M. A. Alsharif

Abstract Population growth is increasing rapidly around the world, in these consequences we need to produce more foods to full fill the demand of increased population. The world is facing global warming due to urbanizations and industrialization and in this concerns plants exposed continuously to abiotic stresses which is a major cause of crop hammering every year. Abiotic stresses consist of Drought, Salt, Heat, Cold, Oxidative and Metal toxicity which damage the crop yield continuously. Drought and salinity stress severally affected in similar manner to plant and the leading cause of reduction in crop yield. Plants respond to various stimuli under abiotic or biotic stress condition and express certain genes either structural or regulatory genes which maintain the plant integrity. The regulatory genes primarily the transcription factors that exert their activity by binding to certain cis DNA elements and consequently either up regulated or down regulate to target expression. These transcription factors are known as masters regulators because its single transcript regulate more than one gene, in this context the regulon word is fascinating more in compass of transcription factors. Progress has been made to better understand about effect of regulons (AREB/ABF, DREB, MYB, and NAC) under abiotic stresses and a number of regulons reported for stress responsive and used as a better transgenic tool of Arabidopsis and Rice.


2022 ◽  
Author(s):  
Jinping Shi ◽  
Quanwei Zhang ◽  
Yali Song ◽  
Zhaomin Lei ◽  
Lingjuan Fu ◽  
...  
Keyword(s):  

Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 89
Author(s):  
Tongyu Zhang ◽  
Zhonghua Ning ◽  
Yu Chen ◽  
Junhui Wen ◽  
Yaxiong Jia ◽  
...  

Molting is natural adaptation to climate change in all birds, including chickens. Forced molting (FM) can rejuvenate and reactivate the reproductive potential of aged hens, but the effect of natural molting (NM) on older chickens is not clear. To explore why FM has a dramatically different effect on chickens compared with NM, the transcriptome analyses of the hypothalamus and ovary in forced molted and natural molted hens at two periods with feathers fallen and regrown were performed. Additionally, each experimental chicken was tested for serological indices. The results of serological indices showed that growth hormone, thyroid stimulating hormone, and thyroxine levels were significantly higher (p < 0.05) in forced molted hens than in natural molted hens, and calcitonin concentrations were lower in the forced molted than in the natural molted hens. Furthermore, the transcriptomic analysis revealed a large number of genes related to disease resistance and anti-aging in the two different FM and NM periods. These regulatory genes and serological indices promote reproductive function during FM. This study systematically revealed the transcriptomic and serological differences between FM and NM, which could broaden our understanding of aging, rejuvenation, egg production, and welfare issues related to FM in chickens.


2021 ◽  
Vol 22 (24) ◽  
pp. 13452
Author(s):  
Yanhua Cui ◽  
Meihong Wang ◽  
Yankun Zheng ◽  
Kai Miao ◽  
Xiaojun Qu

Lactiplantibacillus plantarum has a strong carbohydrate utilization ability. This characteristic plays an important role in its gastrointestinal tract colonization and probiotic effects. L. plantarum LP-F1 presents a high carbohydrate utilization capacity. The genome analysis of 165 L. plantarum strains indicated the species has a plenty of carbohydrate metabolism genes, presenting a strain specificity. Furthermore, two-component systems (TCSs) analysis revealed that the species has more TCSs than other lactic acid bacteria, and the distribution of TCS also shows the strain specificity. In order to clarify the sugar metabolism mechanism under different carbohydrate fermentation conditions, the expressions of 27 carbohydrate metabolism genes, catabolite control protein A (CcpA) gene ccpA, and TCSs genes were analyzed by quantitative real-time PCR technology. The correlation analysis between the expressions of regulatory genes and sugar metabolism genes showed that some regulatory genes were correlated with most of the sugar metabolism genes, suggesting that some TCSs might be involved in the regulation of sugar metabolism.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chiranjib Chakraborty ◽  
Ashish Ranjan Sharma ◽  
Manojit Bhattacharya ◽  
Hatem Zayed ◽  
Sang-Soo Lee

The COVID-19 pandemic has created an urgent situation throughout the globe. Therefore, it is necessary to identify the differentially expressed genes (DEGs) in COVID-19 patients to understand disease pathogenesis and the genetic factor(s) responsible for inter-individual variability. The DEGs will help understand the disease’s potential underlying molecular mechanisms and genetic characteristics, including the regulatory genes associated with immune response elements and protective immunity. This study aimed to determine the DEGs in mild and severe COVID-19 patients versus healthy controls. The Agilent-085982 Arraystar human lncRNA V5 microarray GEO dataset (GSE164805 dataset) was used for this study. We used statistical tools to identify the DEGs. Our 15 human samples dataset was divided into three groups: mild, severe COVID-19 patients and healthy control volunteers. We compared our result with three other published gene expression studies of COVID-19 patients. Along with significant DEGs, we developed an interactome map, a protein-protein interaction (PPI) pattern, a cluster analysis of the PPI network, and pathway enrichment analysis. We also performed the same analyses with the top-ranked genes from the three other COVID-19 gene expression studies. We also identified differentially expressed lncRNA genes and constructed protein-coding DEG-lncRNA co-expression networks. We attempted to identify the regulatory genes related to immune response elements and protective immunity. We prioritized the most significant 29 protein-coding DEGs. Our analyses showed that several DEGs were involved in forming interactome maps, PPI networks, and cluster formation, similar to the results obtained using data from the protein-coding genes from other investigations. Interestingly we found six lncRNAs (TALAM1, DLEU2, and UICLM CASC18, SNHG20, and GNAS) involved in the protein-coding DEG-lncRNA network; which might be served as potential biomarkers for COVID-19 patients. We also identified three regulatory genes from our study and 44 regulatory genes from the other investigations related to immune response elements and protective immunity. We were able to map the regulatory genes associated with immune elements and identify the virogenomic responses involved in protective immunity against SARS-CoV-2 infection during COVID-19 development.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Hui Zhang ◽  
Haifang Wang Haifang ◽  
Xiaoyu Shen ◽  
Xinling Jia ◽  
Shuguang Yu ◽  
...  

Multidimensional landscapes of regulatory genes in neuronal phenotypes at whole-brain levels in the vertebrate remain elusive. We generated single-cell transcriptomes of ~67,000 region- and glutamatergic/neuromodulator-identifiable cells from larval zebrafish brains. Hierarchical clustering based on effector gene profiles ('terminal features') distinguished major brain cell types. Sister clusters at hierarchical termini displayed similar terminal features. It was further verified by a population-level statistical method. Intriguingly, glutamatergic/GABAergic sister clusters mostly expressed distinct transcriptional factor (TF) profiles ('convergent pattern'), whereas neuromodulator-type sister clusters predominantly expressed the same TF profiles ('matched pattern'). Interestingly, glutamatergic/GABAergic clusters with similar TF profiles could also display different terminal features ('divergent pattern'). It led us to identify a library of RNA-binding proteins that differentially marked divergent pair clusters, suggesting the post-transcriptional regulation of neuron diversification. Thus, our findings reveal multidimensional landscapes of transcriptional and post-transcriptional regulators in whole-brain neuronal phenotypes in the zebrafish brain.


Author(s):  
Donghao Shang ◽  
Gang Li ◽  
Caixing Zhang ◽  
Yuting Liu

This study is to reveal the gene transcriptional alteration, possible molecular mechanism, and pathways involved in the synergy of 5-aza-2'-deoxycytidine (DAC) and CDDP in UC. Two UC cell lines, 5637 and T24, were used in the study. A cDNA microarray was carried out to identify critical genes in the synergistic mechanism of both agents against UC cells. The results showed that several key regulatory genes, such as interleukin 24(IL24), fibroblast growth factor 1(FGF1), and transforming growth factor beta-induced (TGFBI), were identified and may play critical roles in the synergy of DAC and CDDP in UC. Pathway enrichment suggested that many carcinogenesis-related pathways, such as ECM-receptor interaction and MAPK signaling pathways, may participate in the synergy of both agents. Our results suggested that TGF-β1 stimulates the phosphorylation levels of ERK1/2 and p38 via increasing TGFBI expression, TGFBI-MAPK signaling pathway plays an important role in the synergy of DAC and CDDP against UC. Therefore, we revealed the synergistic mechanism of DAC and CDDP in UC, several key regulatory genes play critical roles in the synergy of combined treatment, and TGFBI-MAPK signaling pathway may be an important potential target of these two agents.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bo-Ning Li ◽  
Quan-Dong Tang ◽  
Yan-Lian Tan ◽  
Liang Yan ◽  
Ling Sun ◽  
...  

Atrial septal defects (ASDs) are the most common types of cardiac septal defects in congenital heart defects. In addition to traditional therapy, interventional closure has become the main treatment method. However, the molecular events and mechanisms underlying the repair progress by occlusion device remain unknown. In this study, we aimed to characterize differentially expressed genes (DEGs) in the blood of patients treated with occlusion devices (metal or poly-L-lactic acid devices) using RNA-sequencing, and further validated them by qRT-PCR analysis to finally determine the expression of key mediating genes after closure of ASD treatment. The result showed that total 1,045 genes and 1,523 genes were expressed differently with significance in metal and poly-L-lactic acid devices treatment, respectively. The 115 overlap genes from the different sub-analyses are illustrated. The similarities and differences in gene expression reflect that the body response process involved after interventional therapy for ASDs has both different parts that do not overlap and the same part that crosses. The same portion of body response regulatory genes are key regulatory genes expressed in the blood of patients with ASDs treated with closure devices. The gene ontology enrichment analysis showed that biological processes affected in metal device therapy are immune response with CXCR4 genes and poly-L-lactic acid device treatment, and the key pathways are nuclear-transcribed mRNA catabolic process and proteins targeting endoplasmic reticulum process with ribosomal proteins (such as RPS26). We confirmed that CXCR4, TOB1, and DDIT4 gene expression are significantly downregulated toward the pre-therapy level after the post-treatment in both therapy groups by qRT-PCR. Our study suggests that the potential role of CXCR4, DDIT4, and TOB1 may be key regulatory genes in the process of endothelialization in the repair progress of ASDs, providing molecular insights into this progress for future studies.


2021 ◽  
Vol 25 (12) ◽  
pp. 974-981
Author(s):  
J. J. Lee ◽  
H. Y. Kang ◽  
W-I. Lee ◽  
S. Y. Cho ◽  
Y. J. Kim ◽  
...  

BACKGROUND: The mechanism underlying kanamycin (KM) resistance in Mycobacterium tuberculosis is not well understood, although efflux pump proteins are thought to play a role. This study used RNA-seq data to investigate changes in the expression levels of efflux pump genes following exposure to KM.METHODS: RNA expression of efflux pump and regulatory genes following exposure to different concentrations of KM (minimum inhibitory concentration MIC 25 and MIC50) in rrs wild-type strain and rrs A1401G mutated strain were compared with the control group.RESULTS: The selected strains had differential RNA expression patterns. Among the 71 putative efflux pump and regulatory genes, 46 had significant fold changes, and 12 genes (Rv0842, Rv1146, Rv1258c, Rv1473, Rv1686c, Rv1687c, Rv1877, Rv2038c, Rv3065, Rv3197a, Rv3728 and Rv3789) that were overexpressed following exposure to KM were thought to contribute to drug resistance. Rv3197A (whiB7) showed a distinct fold change based on the concentration of KM.CONCLUSION: The significant changes in the expression of the efflux pump and regulatory genes following exposure to KM may provide insights into the identification of a new resistance mechanism.


Sign in / Sign up

Export Citation Format

Share Document