Some limit theorems for the homogeneous Poisson process

1991 ◽  
Vol 12 (2) ◽  
pp. 91-96 ◽  
Author(s):  
P. Auer ◽  
K. Hornik ◽  
P. Révész
2020 ◽  
Vol 52 (1) ◽  
pp. 1-31
Author(s):  
Takashi Owada ◽  
Andrew M. Thomas

AbstractThe objective of this study is to examine the asymptotic behavior of Betti numbers of Čech complexes treated as stochastic processes and formed from random points in the d-dimensional Euclidean space ${\mathbb{R}}^d$ . We consider the case where the points of the Čech complex are generated by a Poisson process with intensity nf for a probability density f. We look at the cases where the behavior of the connectivity radius of the Čech complex causes simplices of dimension greater than $k+1$ to vanish in probability, the so-called sparse regime, as well when the connectivity radius is of the order of $n^{-1/d}$ , the critical regime. We establish limit theorems in the aforementioned regimes: central limit theorems for the sparse and critical regimes, and a Poisson limit theorem for the sparse regime. When the connectivity radius of the Čech complex is $o(n^{-1/d})$ , i.e. the sparse regime, we can decompose the limiting processes into a time-changed Brownian motion or a time-changed homogeneous Poisson process respectively. In the critical regime, the limiting process is a centered Gaussian process but has a much more complicated representation, because the Čech complex becomes highly connected with many topological holes of any dimension.


Crisis ◽  
2013 ◽  
Vol 34 (6) ◽  
pp. 434-437 ◽  
Author(s):  
Donald W. MacKenzie

Background: Suicide clusters at Cornell University and the Massachusetts Institute of Technology (MIT) prompted popular and expert speculation of suicide contagion. However, some clustering is to be expected in any random process. Aim: This work tested whether suicide clusters at these two universities differed significantly from those expected under a homogeneous Poisson process, in which suicides occur randomly and independently of one another. Method: Suicide dates were collected for MIT and Cornell for 1990–2012. The Anderson-Darling statistic was used to test the goodness-of-fit of the intervals between suicides to distribution expected under the Poisson process. Results: Suicides at MIT were consistent with the homogeneous Poisson process, while those at Cornell showed clustering inconsistent with such a process (p = .05). Conclusions: The Anderson-Darling test provides a statistically powerful means to identify suicide clustering in small samples. Practitioners can use this method to test for clustering in relevant communities. The difference in clustering behavior between the two institutions suggests that more institutions should be studied to determine the prevalence of suicide clustering in universities and its causes.


2011 ◽  
Vol 43 (01) ◽  
pp. 121-130 ◽  
Author(s):  
Jay Bartroff ◽  
Ester Samuel-Cahn

In this paper we study the fighter problem with discrete ammunition. An aircraft (fighter) equipped with n anti-aircraft missiles is intercepted by enemy airplanes, the appearance of which follows a homogeneous Poisson process with known intensity. If j of the n missiles are spent at an encounter, they destroy an enemy plane with probability a(j), where a(0) = 0 and {a(j)} is a known, strictly increasing concave sequence, e.g. a(j) = 1 - q j , 0 < q < 1. If the enemy is not destroyed, the enemy shoots the fighter down with known probability 1 - u, where 0 ≤ u ≤ 1. The goal of the fighter is to shoot down as many enemy airplanes as possible during a given time period [0, T]. Let K(n, t) be the smallest optimal number of missiles to be used at a present encounter, when the fighter has flying time t remaining and n missiles remaining. Three seemingly obvious properties of K(n, t) have been conjectured: (A) the closer to the destination, the more of the n missiles one should use; (B) the more missiles one has; the more one should use; and (C) the more missiles one has, the more one should save for possible future encounters. We show that (C) holds for all 0 ≤ u ≤ 1, that (A) and (B) hold for the ‘invincible fighter’ (u = 1), and that (A) holds but (B) fails for the ‘frail fighter’ (u = 0); the latter is shown through a surprising counterexample, which is also valid for small u > 0 values.


1979 ◽  
Vol 16 (4) ◽  
pp. 881-889 ◽  
Author(s):  
Hans Dieter Unkelbach

A road traffic model with restricted passing, formulated by Newell (1966), is described by conditional cluster point processes and analytically handled by generating functionals of point processes.The traffic distributions in either space or time are in equilibrium, if the fast cars form a Poisson process with constant intensity combined with Poisson-distributed queues behind the slow cars (Brill (1971)). It is shown that this state of equilibrium is stable, which means that this state will be reached asymptotically for general initial traffic distributions. Furthermore the queues behind the slow cars dissolve asymptotically like independent Poisson processes with diminishing rate, also independent of the process of non-queuing cars. To get these results limit theorems for conditional cluster point processes are formulated.


2011 ◽  
Vol 43 (1) ◽  
pp. 121-130 ◽  
Author(s):  
Jay Bartroff ◽  
Ester Samuel-Cahn

In this paper we study the fighter problem with discrete ammunition. An aircraft (fighter) equipped with n anti-aircraft missiles is intercepted by enemy airplanes, the appearance of which follows a homogeneous Poisson process with known intensity. If j of the n missiles are spent at an encounter, they destroy an enemy plane with probability a(j), where a(0) = 0 and {a(j)} is a known, strictly increasing concave sequence, e.g. a(j) = 1 - qj, 0 < q < 1. If the enemy is not destroyed, the enemy shoots the fighter down with known probability 1 - u, where 0 ≤ u ≤ 1. The goal of the fighter is to shoot down as many enemy airplanes as possible during a given time period [0, T]. Let K(n, t) be the smallest optimal number of missiles to be used at a present encounter, when the fighter has flying time t remaining and n missiles remaining. Three seemingly obvious properties of K(n, t) have been conjectured: (A) the closer to the destination, the more of the n missiles one should use; (B) the more missiles one has; the more one should use; and (C) the more missiles one has, the more one should save for possible future encounters. We show that (C) holds for all 0 ≤ u ≤ 1, that (A) and (B) hold for the ‘invincible fighter’ (u = 1), and that (A) holds but (B) fails for the ‘frail fighter’ (u = 0); the latter is shown through a surprising counterexample, which is also valid for small u > 0 values.


Sign in / Sign up

Export Citation Format

Share Document