critical regime
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 41)

H-INDEX

21
(FIVE YEARS 3)

2022 ◽  
Vol 4 (4) ◽  
pp. 1-21
Author(s):  
Simone Dovetta ◽  
◽  
Angela Pistoia

<abstract><p>We study the existence of solutions to the cubic Schrödinger system</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ -\Delta u_i = \sum\limits_{j = 1}^m \beta_{ij} u_j^2u_i + \lambda_i u_i\ \hbox{in}\ \Omega,\ u_i = 0\ \hbox{on}\ \partial\Omega,\ i = 1,\dots,m, $\end{document} </tex-math></disp-formula></p> <p>when $ \Omega $ is a bounded domain in $ \mathbb R^4, $ $ \lambda_i $ are positive small numbers, $ \beta_{ij} $ are real numbers so that $ \beta_{ii} &gt; 0 $ and $ \beta_{ij} = \beta_{ji} $, $ i\neq j $. We assemble the components $ u_i $ in groups so that all the interaction forces $ \beta_{ij} $ among components of the same group are attractive, i.e., $ \beta_{ij} &gt; 0 $, while forces among components of different groups are repulsive or weakly attractive, i.e., $ \beta_{ij} &lt; \overline\beta $ for some $ \overline\beta $ small. We find solutions such that each component within a given group blows-up around the same point and the different groups blow-up around different points, as all the parameters $ \lambda_i $'s approach zero.</p></abstract>


2021 ◽  
Vol 104 (24) ◽  
Author(s):  
Erik D. Kountz ◽  
Jiecheng Zhang ◽  
Joshua A. W. Straquadine ◽  
Anisha G. Singh ◽  
Maja D. Bachmann ◽  
...  

2021 ◽  
Vol 930 ◽  
Author(s):  
Gaurav Chopra ◽  
Sanjay Mittal

Large eddy simulation of flow past a circular cylinder of low aspect ratio ( $AR=1$ and $3$ ), spanning subcritical, critical and supercritical regimes, is carried out for $2\times 10^3 \le Re \le 4\times 10^5$ . The end walls restrict three-dimensionality of the flow. The critical $Re$ for the onset of the critical regime is significantly lower for small aspect ratio cylinders. The evolution of secondary vortex (SV), laminar separation bubble (LSB) and the related transition of boundary layer with $Re$ is investigated. The plateau in the surface pressure due to LSB is modified by the presence of SV. Proper orthogonal decomposition of surface pressure reveals that although the vortex shedding mode is most dominant throughout the $Re$ regime studied, significant energy of the flow lies in a symmetric mode that corresponds to expansion–contraction of the vortex formation region and is responsible for bursts of weak vortex shedding. A triple decomposition of the time signals comprising of contributions from shear layer vortices, von Kármán vortex shedding and low frequency modulation due to the symmetric mode of flow is proposed. A moving average, with appropriate size of window, is utilized to estimate the component due to vortex shedding. It is used to assess the variation, with $Re$ , of strength of vortex shedding as well as its coherence along the span. Weakening of vortex shedding in the high subcritical and critical regime is followed by its rejuvenation in the supercritical regime. Its spanwise correlation is high in the subcritical regime, decreases in the critical regime and improves again in the supercritical regime.


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 396
Author(s):  
Ivette Rodriguez ◽  
Oriol Lehmkuhl

The flow topology of the wake behind a circular cylinder at the super-critical Reynolds number of Re=7.2×105 is investigated by means of large eddy simulations. In spite of the many research works on circular cylinders, there are no studies concerning the main characteristics and topology of the near wake in the super-critical regime. Thus, the present work attempts to fill the gap in the literature and contribute to the analysis of both the unsteady wake and the turbulent statistics of the flow. It is found that although the wake is symmetric and preserves similar traits to those observed in the sub-critical regime, such as the typical two-lobed configuration in the vortex formation zone, important differences are also observed. Owing to the delayed separation of the flow and the transition to turbulence in the attached boundary layer, Reynolds stresses peak in the detached shear layers close to the separation point. The unsteady mean flow is also investigated, and topological critical points are identified in the vortex formation zone and the near wake. Finally, time-frequency analysis is performed by means of wavelets. The study shows that in addition to the vortex shedding frequency, the inception of instabilities that trigger transition to turbulence occurs intermittently in the attached boundary layer and is registered as a phenomenon of variable intensity in time.


2021 ◽  
Vol 2038 (1) ◽  
pp. 012024
Author(s):  
Sriram Sundaram ◽  
C P Burgess ◽  
Duncan H J O’Dell

Abstract The attractive inverse square potential arises in a number of physical problems such as a dipole interacting with a charged wire, the Efimov effect, the Calgero-Sutherland model, near-horizon black hole physics and the optics of Maxwell fisheye lenses. Proper formulation of the inverse-square problem requires specification of a boundary condition (regulator) at the origin representing short-range physics not included in the inverse square potential and this generically breaks the Hamiltonian’s continuous scale invariance in an elementary example of a quantum anomaly. The system’s spectrum qualitatively changes at a critical value of the inverse-square coupling, and we here point out that the transition at this critical potential strength can be regarded as an example of a PT symmetry breaking transition. In particular, we use point particle effective field theory (PPEFT), as developed by Burgess et al [1], to characterize the renormalization group (RG) evolution of the boundary coupling under rescalings. While many studies choose boundary conditions to ensure the system is unitary, these RG methods allow us to systematically handle the richer case of nonunitary physics describing a source or sink at the origin (such as is appropriate for the charged wire or black hole applications). From this point of view the RG flow changes character at the critical inverse-square coupling, transitioning from a sub-critical regime with evolution between two real, unitary fixed points ( PT symmetric phase) to a super-critical regime with imaginary, dissipative fixed points ( PT symmetry broken phase) that represent perfect-sink and perfect-source boundary conditions, around which the flow executes limit-cycle evolution.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Frank Lechermann

AbstractThe natural-heterostructure concept realized in delafossites highlights these layered oxides. While metallic, band- or Mott-insulating character may be associated with individual layers, inter-layer coupling still plays a decisive role. We review the correlated electronic structure of PdCoO2, PdCrO2, and AgCrO2, showing that layer-entangled electronic states can deviate from standard classifications of interacting systems. This finding opens up possibilities for materials design in a subtle Mott-critical regime. Manipulated Hidden-Mott physics, correlation-induced semimetallicity, or Dirac/flat-band dispersions in a Mott background are emerging features. Together with achievements in the experimental preparation, this inaugurates an exciting research field in the arena of correlated materials.


Author(s):  
Hachemi Rachedi Lamia ◽  
Lakehal Moussa ◽  
Achour Bachir

Abstract The critical regime plays a primordial role in the study of gradually varying flows by classifying flow regimes and slopes. Through this work, a new approach is proposed to analyze critical flow regime in an egg-shaped channel. Based on both the definition of Froude number and Achour and Bedjaoui general discharge relationship, a relation between critical and normal depths is derived and then graphically represented for the particular case of a smooth channel characterized by a generating diameter equal to one meter. The results show the influence of the slope on the frequency of occurrence of the critical regime. At the same time and independently of the flow rate, a very advantageous approach for the calculation of the Froude number has been proposed. The study shows that there are six zones to differentiate the various flow states, namely: on the one hand for steep slopes two subcritical zones interspersed by a supercritical zone and on the other hand for mild slopes a zone corresponding to uniform flow, an area where the flow is probably gradually varied and finally an area where the flow is abruptly varied. Based on the specific energy equation, a validation process concluded that the proposed relationships were reliable.


2021 ◽  
Vol 863 ◽  
pp. 158884
Author(s):  
Kyujoon Lee ◽  
Woosuk Yoo ◽  
Quynh Anh T. Nguyen ◽  
Hyun-Woo Bang ◽  
Hyeonsu Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document