Singular character of axisymmetric stresses around wedge-shaped notches in cylindrical bodies under torsion: unit step load

1993 ◽  
Vol 18 (3) ◽  
pp. 247-257 ◽  
Author(s):  
J.M. Bastero ◽  
J.M. Martínez-Esnaola
Keyword(s):  
Author(s):  
Mingjie Zhang ◽  
Ole Øiseth

AbstractA convolution-based numerical algorithm is presented for the time-domain analysis of fluidelastic instability in tube arrays, emphasizing in detail some key numerical issues involved in the time-domain simulation. The unit-step and unit-impulse response functions, as two elementary building blocks for the time-domain analysis, are interpreted systematically. An amplitude-dependent unit-step or unit-impulse response function is introduced to capture the main features of the nonlinear fluidelastic (FE) forces. Connections of these elementary functions with conventional frequency-domain unsteady FE force coefficients are discussed to facilitate the identification of model parameters. Due to the lack of a reliable method to directly identify the unit-step or unit-impulse response function, the response function is indirectly identified based on the unsteady FE force coefficients. However, the transient feature captured by the indirectly identified response function may not be consistent with the physical fluid-memory effects. A recursive function is derived for FE force simulation to reduce the computational cost of the convolution operation. Numerical examples of two tube arrays, containing both a single flexible tube and multiple flexible tubes, are provided to validate the fidelity of the time-domain simulation. It is proven that the present time-domain simulation can achieve the same level of accuracy as the frequency-domain simulation based on the unsteady FE force coefficients. The convolution-based time-domain simulation can be used to more accurately evaluate the integrity of tube arrays by considering various nonlinear effects and non-uniform flow conditions. However, the indirectly identified unit-step or unit-impulse response function may fail to capture the underlying discontinuity in the stability curve due to the prespecified expression for fluid-memory effects.


1959 ◽  
Vol 6 (1) ◽  
pp. 137-138
Author(s):  
B. Hicks ◽  
R. Stemmler
Keyword(s):  

1971 ◽  
Vol 61 (4) ◽  
pp. 1009-1012 ◽  
Author(s):  
J. C. Savage

abstract The far-field radiation from a simple fault model is given by the radiation pattern associated with the appropriate strain nucleus (e.g., double couple) multiplied by a fault propagation factor. For a unilateral fault model the propagation factor is F ( c ; t ) = ζ bd [ H ( τ ) − H ( τ − ( L / ζ ) ( 1 − ( ζ / c ) cos ψ )) ] / ( 1 − ( ζ / c ) cos ψ ) where ξ is the velocity of fault propagation, b is the fault slip, d is the fault width, τ = t − r0/c, r0 is the distance of the observer from the initial point of faulting, c is the velocity of the seismic wave, H(τ) is the unit-step function, L is the length of the fault, and ψ the angle between r0 and the direction of fault propagation. This representation is valid for both subsonic and supersonic fault propagation. The latter case is important because Weertman (1969) has recently shown that spontaneous faulting may propagate at supersonic velocities. Because the propagation factor is always positive, the nodal planes for the radiation are the same as for the appropriate strain nucleus. Finally, it is shown by the application of this equation that the radiation from a screw dislocation segment is represented by the double-couple nucleus, not the compensated linear-vector dipole nucleus as recently suggested by Knopoff and Randall (1970).


2017 ◽  
Vol 37 (1) ◽  
pp. 41-44
Author(s):  
Karol Grochalski ◽  
Katarzyna Peta

Abstract Article presents the methods of detecting defects within material with the use of active infrared thermovision. During the study ABS and PVC samples were used inside which internal structure defects and defects of glue conjunction between components were modeled. During combining composite materials with the use of glue joints, there is a problem with homogenous distribution of the glue layer on the surface of an element, which results in the creation of defects in joint structure and the decline of active surface of adhesion forces on the combined materials. It is then necessary to control the quality of the conjunction between the glued surfaces. The use of non-contact diagnostic methods allows to analyze a larger surface which conditions in more efficient quality control process. In the study, external heat excitation was used - optical excitation with periodic variable signal (LockIn method) and unit step excitation (Pulse method). The methods of analysis of the obtained thermograms are presented.


2019 ◽  
Vol 22 (5) ◽  
pp. 953-974
Author(s):  
Ángel del Río ◽  
Mariano Serrano

Abstract H. J. Zassenhaus conjectured that any unit of finite order and augmentation 1 in the integral group ring {\mathbb{Z}G} of a finite group G is conjugate in the rational group algebra {\mathbb{Q}G} to an element of G. We prove the Zassenhaus conjecture for the groups {\mathrm{SL}(2,p)} and {\mathrm{SL}(2,p^{2})} with p a prime number. This is the first infinite family of non-solvable groups for which the Zassenhaus conjecture has been proved. We also prove that if {G=\mathrm{SL}(2,p^{f})} , with f arbitrary and u is a torsion unit of {\mathbb{Z}G} with augmentation 1 and order coprime with p, then u is conjugate in {\mathbb{Q}G} to an element of G. By known results, this reduces the proof of the Zassenhaus conjecture for these groups to proving that every unit of {\mathbb{Z}G} of order a multiple of p and augmentation 1 has order actually equal to p.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1230
Author(s):  
Faris Alzahrani

In this work, the generalized photo-thermo-elastic model with variable thermal conductivity is presented to estimates the variations of temperature, the carrier density, the stress and the displacement in a semiconductor material. The effects of variable thermal conductivity under photo-thermal transport process is investigated by using the coupled model of thermoelastic and plasma wave. The surface of medium is loaded by uniform unit step temperature. Easily, the analytical solutions in the domain of Laplace are obtained. By using Laplace transforms with the eigenvalue scheme, the fields studied are obtained analytically and presented graphically.


Sign in / Sign up

Export Citation Format

Share Document