scholarly journals The joint embedding property in normal open induction

1993 ◽  
Vol 60 (3) ◽  
pp. 275-290 ◽  
Author(s):  
Margarita Otero
1985 ◽  
Vol 50 (3) ◽  
pp. 604-610
Author(s):  
Francoise Point

The starting point of this work was Saracino and Wood's description of the finitely generic abelian ordered groups [S-W].We generalize the result of Saracino and Wood to a class ∑UH of subdirect products of substructures of elements of a class ∑, which has some relationships with the discriminator variety V(∑t) generated by ∑. More precisely, let ∑ be an elementary class of L-algebras with theory T. Burris and Werner have shown that if ∑ has a model companion then the existentially closed models in the discriminator variety V(∑t) form an elementary class which they have axiomatized. In general it is not the case that the existentially closed elements of ∑UH form an elementary class. For instance, take for ∑ the class ∑0 of linearly ordered abelian groups (see [G-P]).We determine the finitely generic elements of ∑UH via the three following conditions on T:(1) There is an open L-formula which says in any element of ∑UH that the complement of equalizers do not overlap.(2) There is an existentially closed element of ∑UH which is an L-reduct of an element of V(∑t) and whose L-extensions respect the relationships between the complements of the equalizers.(3) For any models A, B of T, there exists a model C of TUH such that A and B embed in C.(Condition (3) is weaker then “T has the joint embedding property”. It is satisfied for example if every model of T has a one-element substructure. Condition (3) implies that ∑UH has the joint embedding property and therefore that the class of finitely generic elements of ∑UH is complete.)


2015 ◽  
Vol 65 (4) ◽  
Author(s):  
Tommaso Flaminio ◽  
Matteo Bianchi

AbstractIn this short paper we will discuss on saturated and κ-saturated models of many-valued (t-norm based fuzzy) logics. Using these peculiar structures we show a representation theorem à la Di Nola for several classes of algebras including MV, Gödel, product, BL, NM and WNM-algebras. Then, still using (κ)-saturated algebras, we finally show that some relevant subclasses of algebras related to many-valued logics also enjoy the joint embedding property and the amalgamation property.


1984 ◽  
Vol 49 (1) ◽  
pp. 68-74 ◽  
Author(s):  
Stanley Burris

AbstractIn an earlier paper we proved that a universal Horn class generated by finitely many finite structures has a model companion. If the language has only finitely many fundamental operations then the theory of the model companion admits a primitive recursive elimination of quantifiers and is primitive recursive. The theory of the model companion is ℵ0-categorical iff it is complete iff the universal Horn class has the joint embedding property iff the universal Horn class is generated by a single finite structure. In the last section we look at structure theorems for the model companions of universal Horn classes generated by functionally complete algebras, in particular for the cases of rings and groups.


1984 ◽  
Vol 49 (4) ◽  
pp. 1333-1338
Author(s):  
Cornelia Kalfa

In [4] I proved that in any nontrivial algebraic language there are no algorithms which enable us to decide whether a given finite set of equations Σ has each of the following properties except P2 (for which the problem is open):P0(Σ) = the equational theory of Σ is equationally complete.P1(Σ) = the first-order theory of Σ is complete.P2(Σ) = the first-order theory of Σ is model-complete.P3(Σ) = the first-order theory of the infinite models of Σ is complete.P4(Σ) = the first-order theory of the infinite models of Σ is model-complete.P5(Σ) = Σ has the joint embedding property.In this paper I prove that, in any finite trivial algebraic language, such algorithms exist for all the above Pi's. I make use of Ehrenfeucht's result [2]: The first-order theory generated by the logical axioms of any trivial algebraic language is decidable. The results proved here are part of my Ph.D. thesis [3]. I thank Wilfrid Hodges, who supervised it.Throughout the paper is a finite trivial algebraic language, i.e. a first-order language with equality, with one operation symbol f of rank 1 and at most finitely many constant symbols.


1996 ◽  
Vol 33 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Aleksander Ignjatović ◽  
Milan Z. Grulović

1999 ◽  
Vol 64 (2) ◽  
pp. 775-789 ◽  
Author(s):  
A. A. Ivanov

Let M be a countably infinite ω-categorical structure. Consider Aut(M) as a complete metric space by defining d(g, h) = Ω{2−n: g (xn) ≠ h(xn) or g−1 (xn) ≠ h−1 (xn)} where {xn : n ∈ ω} is an enumeration of M An automorphism α ∈ Aut(M) is generic if its conjugacy class is comeagre. J. Truss has shown in [11] that if the set P of all finite partial isomorphisms contains a co-final subset P1 closed under conjugacy and having the amalgamation property and the joint embedding property then there is a generic automorphism. In the present paper we give a weaker condition of this kind which is equivalent to the existence of generic automorphisms. Really we give more: a characterization of the existence of generic expansions (defined in an appropriate way) of an ω-categorical structure. We also show that Truss' condition guarantees the existence of a countable structure consisting of automorphisms of M which can be considered as an atomic model of some theory naturally associated to M. We do it in a general context of weak models for second-order quantifiers.The author thanks Ludomir Newelski for pointing out a mistake in the first version of Theorem 1.2 and for interesting discussions. Also, the author is grateful to the referee for very helpful remarks.


2019 ◽  
Vol 84 (1) ◽  
pp. 88-101
Author(s):  
RUIYUAN CHEN

AbstractA category has the amalgamation property (AP) if every pushout diagram has a cocone, and the joint embedding property (JEP) if every finite coproduct diagram has a cocone. We show that for a finitely generated category I, the following are equivalent: (i) every I-shaped diagram in a category with the AP and the JEP has a cocone; (ii) every I-shaped diagram in the category of sets and injections has a cocone; (iii) a certain canonically defined category ${\cal L}\left( {\bf{I}} \right)$ of “paths” in I has only idempotent endomorphisms. When I is a finite poset, these are further equivalent to: (iv) every upward-closed subset of I is simply-connected; (v) I can be built inductively via some simple rules. Our proof also shows that these conditions are decidable for finite I.


1986 ◽  
Vol 51 (1) ◽  
pp. 79-87 ◽  
Author(s):  
Cornelia Kalfa

In this paper a general method of proving the undecidability of a property P, for finite sets Σ of equations of a countable algebraic language, is presented. The method is subsequently applied to establish the undecidability of the following properties, in almost all nontrivial such languages:1. The first-order theory generated by the infinite models of Σ is complete.2. The first-order theory generated by the infinite models of Σ is model-complete.3. Σ has the joint-embedding property.4. The first-order theory generated by the models of Σ with more than one element has the joint-embedding property.5. The first-order theory generated by the infinite models of Σ has the joint-embedding property.A countable algebraic language ℒ is a first-order language with equality, with countably many nonlogical symbols but without relation symbols, ℒ is trivial if it has at most one operation symbol, and this is of rank one. Otherwise, ℒ is nontrivial. An ℒ-equation is a sentence of the form , where φ and ψ are ℒ-terms. The set of ℒ-equations is denoted by Eqℒ. A set of sentences is said to have the joint-embedding property if any two models of it are embeddable in a third model of it.If P is a property of sets of ℒ-equations, the decision problem of P for finite sets of ℒ-equations is the problem of the existence or not of an algorithm for deciding whether, given a finite Σ ⊂ Eqℒ, Σ has P or not.


Author(s):  
Maciej Malicki

AbstractWe study the notion of weak amalgamation in the context of diagonal conjugacy classes. Generalizing results of Kechris and Rosendal, we prove that for every countable structure M, Polish group G of permutations of M, and $$n \ge 1$$ n ≥ 1 , G has a comeager n-diagonal conjugacy class iff the family of all n-tuples of G-extendable bijections between finitely generated substructures of M, has the joint embedding property and the weak amalgamation property. We characterize limits of weak Fraïssé classes that are not homogenizable. Finally, we investigate 1- and 2-diagonal conjugacy classes in groups of ball-preserving bijections of certain ordered ultrametric spaces.


Sign in / Sign up

Export Citation Format

Share Document