2313 Delay-related activity of primate prefrontal neurons depends on what reward is given and how the cue is presented in the delayed response task

1996 ◽  
Vol 25 ◽  
pp. S242
Author(s):  
Masataka Watanabe ◽  
Kazuo Hikosaka ◽  
Megumi Odagiri ◽  
Tohru Kodama ◽  
Shu-Ichiro Shirakawa
NeuroImage ◽  
1998 ◽  
Vol 7 (4) ◽  
pp. S343
Author(s):  
R.A. Berman ◽  
J.A. Sweeney ◽  
K.R. Thulborn ◽  
C.L. Colby

1999 ◽  
Vol 275 (1) ◽  
pp. 9-12 ◽  
Author(s):  
P Stratta ◽  
E Daneluzzo ◽  
P Prosperini ◽  
M Bustini ◽  
M.G Marinangeli ◽  
...  

2005 ◽  
Vol 93 (1) ◽  
pp. 614-619 ◽  
Author(s):  
Ikuo Tanibuchi ◽  
Patricia S. Goldman-Rakic

We previously reported that neurons in the mediodorsal thalamic nucleus (MD) are topographically organized and express spatial and nonspatial coding properties similar to those of the prefrontal areas with which they are connected. In the course of mapping the dorsal thalamus, we also studied neurons in a subset of thalamic nuclei (the caudal part of the ventral lateral nucleus (VLc), the oral part of the ventral posterior lateral nucleus (VPLo), the parvocellular part of the ventral anterior nucleus (VApc)) lateral to the MD and just across the internal medullary lamina. We compared these “paralaminar” neurons to MD neurons by having monkeys perform the same spatial and nonspatial cognitive tasks as those used to investigate the MD; these included two saccadic tasks—one requiring delayed and the other immediate responses—and one picture fixation task. Of the paralaminar thalamic neurons modulated by the saccadic tasks, a majority had saccade-related activity, and this was nearly always spatially tuned. Also, for about half of these neurons, the saccade-related activity occurred exclusively during the delayed-response task. No neurons with event-related activity in the saccadic tasks were preferentially modulated by specific picture stimuli, although other neurons were. All of these results were similar to what we had found for MD neurons. However, in contrast to the high proportion of presaccadic responses observed in the MD, the majority of saccade-related neurons in paralaminar thalamus exhibited mid- or postsaccadic activity, i.e., that started during or after the saccade. Our findings suggest that neurons in the paralaminar thalamus may be possible conduits of oculomotor feedback signals, especially during memory-guided saccades.


1985 ◽  
Vol 37 (2b) ◽  
pp. 121-153 ◽  
Author(s):  
Euan M. Macphail ◽  
Steve Reilly

Short-term retention of non-visual information was investigated using three series of hyperstriatal-lesioned and unoperated control pigeons. Neither retention (Experiment 1) nor acquisition (Experiment 3) of go/no-go alternation was disrupted by the lesions. Similarly, Experiments 2 and 5 failed to detect significant disruption of either retention or acquisition of spatial alternation. Increases in the retention intervals used in these tasks reduced accuracy in both groups but did not differently affect hyperstriatal as opposed to control performance. A lasting deficit was, however, obtained in a delayed-response task (Experiment 4), but this deficit, which was independent of retention interval, appeared to be the result, not of a disruption of memory, but of an exaggerated perseverative tendency. Experiment 6 confirmed that all three series of hyperstriatal birds showed disruption of reversals of a spatial discrimination. It is concluded that hyperstriatal lesions do not disrupt memory processes, and the hypothesis that hyperstriatal damage induces perseveration of central sets is discussed.


2003 ◽  
Vol 90 (5) ◽  
pp. 3441-3454 ◽  
Author(s):  
Albert Compte, ◽  
Christos Constantinidis ◽  
Jesper Tegnér ◽  
Sridhar Raghavachari ◽  
Matthew V. Chafee ◽  
...  

An important question in neuroscience is whether and how temporal patterns and fluctuations in neuronal spike trains contribute to information processing in the cortex. We have addressed this issue in the memory-related circuits of the prefrontal cortex by analyzing spike trains from a database of 229 neurons recorded in the dorsolateral prefrontal cortex of 4 macaque monkeys during the performance of an oculomotor delayed-response task. For each task epoch, we have estimated their power spectrum together with interspike interval histograms and autocorrelograms. We find that 1) the properties of most (about 60%) neurons approximated the characteristics of a Poisson process. For about 25% of cells, with characteristics typical of interneurons, the power spectrum showed a trough at low frequencies (<20 Hz) and the autocorrelogram a dip near zero time lag. About 15% of neurons had a peak at <20 Hz in the power spectrum, associated with the burstiness of the spike train; 2) a small but significant task dependency of spike-train temporal structure: delay responses to preferred locations were characterized not only by elevated firing, but also by suppressed power at low (<20 Hz) frequencies; and 3) the variability of interspike intervals is typically higher during the mnemonic delay period than during the fixation period, regardless of the remembered cue. The high irregularity of neural persistent activity during the delay period is likely to be a characteristic signature of recurrent prefrontal network dynamics underlying working memory.


2014 ◽  
Vol 87 ◽  
pp. 84-89 ◽  
Author(s):  
Takahiro Ishikawa ◽  
Saeka Tomatsu ◽  
Yoshiaki Tsunoda ◽  
Donna S. Hoffman ◽  
Shinji Kakei

Sign in / Sign up

Export Citation Format

Share Document