The relations between long-latency reflexes in hand muscles, somatosensory evoked potentials and transcranial stimulation of motor tracts

Author(s):  
G. Deuschl ◽  
A. Ludolph ◽  
E. Schenck ◽  
C.H. Lücking
Author(s):  
Cengiz Tataroglu ◽  
Ahmet Genc ◽  
Egemen Idiman ◽  
Raif Cakmur ◽  
Fethi Idiman

AbstractBackground:Long latency reflexes (LLR) include afferent sensory, efferent motor and central transcortical pathways. It is supposed that the cortical relay time (CRT) reflects the conduction of central transcortical loop of LLR. Recently, evidence related to the cortical involvement in multiple sclerosis (MS) has been reported in some studies. Our aim was to investigate the CRT alterations in patients with MS.Methods:Upper extremity motor evoked potentials (MEP), somatosensory evoked potentials (SEP) and LLR were tested in 28 patients with MS and control subjects (n=22). The patients with MS were classified according to the clinical form (relapsing-remitting [R-R] and progressive groups). The MS patients with secondary progressive and primary progressive forms were considered as the “progressive” group. CRT for LLR was calculated by subtracting the peak latency of somatosensory evoked potentials (SEP) and that of motor evoked potentials (MEP) by transcranial magnetic stimulation from the onset latency of the second component of LLR (LLR2) (CRT = LLR2 – [MEP latency + N20 latency])Results:Cortical relay time was calculated as 7.4 ± 0.9 ms in control subjects. Cortical relay time was prolonged in patients with MS (11.2 ± 2.9 ms) (p<0.0001). The latencies of LLR, MEP and SEP were also prolonged in patients with MS. Cortical relay time was not correlated with disease severity and clinical form in contrast to other tests.Conclusions:Our findings suggested that CRT can be a valuable electrophysiological tool in patients with MS. Involvement of extracortical neural circuits between sensory and motor cortices or cortical involvement due to MS may cause these findings.


Neurosurgery ◽  
1991 ◽  
Vol 28 (2) ◽  
pp. 223-230 ◽  
Author(s):  
Fumio Shima ◽  
Takato Morioka ◽  
Shozo Tobimatsu ◽  
Omiros Kavaklis ◽  
Motohiro Kato ◽  
...  

Abstract To improve the localization of stereotactic targets, somatosensory evoked potentials (SEPs) were recorded from the thalamus and subthalamic area using a specially designed semimicroelectrode in 61 patients and a conventional “macroclectrode” in 17 patients. By means of the semimicroelectrode, median nerve stimulation evoked two distinct SEPs, consisting of a diphasic wave with a huge positivity restricted to the nucleus ventrocaudalis (Vc) and a triphasic wave of lower amplitude with a major negativity in the ventral part of the nucleus ventrointermedius (Vim) and nucleus ventrooralis posterior (Vop) as well as the subthalamic lemniscal pathway. The Vim-Vc junction could thus be clearly delineated by an abrupt transition of SEPs from one type to the other with a precision of 1 mm. The parvicellular part of the Vc (Vcpc). situated in its basal region, was distinguishable from the Vc proper by a significant reduction of the positivity elicited by stimulation of the median nerve and by a rapid growth of a diphasic SEPs to stimulation of the posterior tibial nerve. In the other thalamic nuclei, stimulation of the median nerve elicited triphasic SEPs of a very small amplitude, suggesting a volume conduction current from the lemniscal pathway. With the macroclectrode, the positivity in the Vc was sensitive to electrode manipulation and the thalamic nuclei could not be distinctly outlined. SEP monitoring using the semimicroelectrode significantly improved the precision of target localization, which allowed minimizing of the volume of the therapeutic lesion without losing surgical effectiveness, while avoiding complications associated with increased penetration of the coagulating electrode. It is suggested that recording serial thalamic SEPs with the semimicroelectrode is a practical method to refine stereotactic targets in the thalamus.


2011 ◽  
Vol 122 (5) ◽  
pp. 1048-1054 ◽  
Author(s):  
Michael Jörg Malcharek ◽  
Janett Landgraf ◽  
Gerd Hennig ◽  
Oliver Sorge ◽  
Juliane Aschermann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document