scholarly journals Auditory brain-stem evoked potentials in cat after kainic acid induced neuronal loss. II. Cochlear nucleus

Author(s):  
Menashe Zaaroor ◽  
Arnold Starr
1983 ◽  
Vol 59 (6) ◽  
pp. 1013-1018 ◽  
Author(s):  
Aage R. Møller ◽  
Peter J. Jannetta

✓ Intracranial responses from the auditory nerve and the cochlear nucleus were recorded from patients undergoing neurosurgical operations during which these structures were exposed. Responses to stimulation of the ipsilateral ear with short tonebursts from the vicinity of the cochlear nucleus show a large surface-negative peak, the latency of which is close to that of peak III in the auditory brain-stem evoked potentials recorded from scalp electrodes. There was also a response to contralateral stimulation, smaller in amplitude and with a longer latency. It is concluded that the cochlear nucleus is the main generator of peak III responses, and that structures of the ascending auditory pathway that are more central than the cochlear nucleus are unlikely to contribute to wave III of the auditory brain-stem evoked potentials.


2019 ◽  
Vol 122 (6) ◽  
pp. 2576-2590
Author(s):  
Susan T. Lubejko ◽  
Bertrand Fontaine ◽  
Sara E. Soueidan ◽  
Katrina M. MacLeod

Single neurons function along a spectrum of neuronal operating modes whose properties determine how the output firing activity is generated from synaptic input. The auditory brain stem contains a diversity of neurons, from pure coincidence detectors to pure integrators and those with intermediate properties. We investigated how intrinsic spike initiation mechanisms regulate neuronal operating mode in the avian cochlear nucleus. Although the neurons in one division of the avian cochlear nucleus, nucleus magnocellularis, have been studied in depth, the spike threshold dynamics of the tonically firing neurons of a second division of cochlear nucleus, nucleus angularis (NA), remained unexplained. The input-output functions of tonically firing NA neurons were interrogated with directly injected in vivo-like current stimuli during whole cell patch-clamp recordings in vitro. Increasing the amplitude of the noise fluctuations in the current stimulus enhanced the firing rates in one subset of tonically firing neurons (“differentiators”) but not another (“integrators”). We found that spike thresholds showed significantly greater adaptation and variability in the differentiator neurons. A leaky integrate-and-fire neuronal model with an adaptive spike initiation process derived from sodium channel dynamics was fit to the firing responses and could recapitulate >80% of the precise temporal firing across a range of fluctuation and mean current levels. Greater threshold adaptation explained the frequency-current curve changes due to a hyperpolarized shift in the effective adaptation voltage range and longer-lasting threshold adaptation in differentiators. The fine-tuning of the intrinsic properties of different NA neurons suggests they may have specialized roles in spectrotemporal processing. NEW & NOTEWORTHY Avian cochlear nucleus angularis (NA) neurons are responsible for encoding sound intensity for sound localization and spectrotemporal processing. An adaptive spike threshold mechanism fine-tunes a subset of repetitive-spiking neurons in NA to confer coincidence detector-like properties. A model based on sodium channel inactivation properties reproduced the activity via a hyperpolarized shift in adaptation conferring fluctuation sensitivity.


Sign in / Sign up

Export Citation Format

Share Document