Scintillation decay time and pulse shape discrimination of binary organic liquid scintillators for the Borexino detector

Author(s):  
Gioacchino Ranucci ◽  
Patrizia Ullucci ◽  
Silvia Bonetti ◽  
Istvan Manno ◽  
Emanuela Meroni ◽  
...  
1970 ◽  
Vol 24 (4) ◽  
pp. 397-404 ◽  
Author(s):  
Donald L. Horrocks

The source of the delayed fluorescence by triplet—triplet interactions is discussed as the basis of the technique of differentiating between particles of different specific ionizations. The variation in the relative intensity of delayed fluorescence (called the slow component of scintillation) is correlated with the type of ionizing radiation. The decay times of the prompt and slow components do not depend upon the type of ionizing particle. The slow component in liquid scintillator solutions free of dissolved gases (especially oxygen) has a decay time of about 250 × 10−9 sec. Liquid scintillator solutions with pulse shape discrimination properties have been used to measure neutrons (proton recoils) in the presence of gamma rays (Compton scattered electrons). They have also been demonstrated as able to measure the relative activities of alpha particles and fission fragments from a fission source in the presence of gamma and beta background.


2021 ◽  
Vol 253 ◽  
pp. 11002
Author(s):  
Caroline Holroyd ◽  
Michael Aspinall ◽  
Tom Deakin

The accurate simulation of the temporal pulse shapes from organic scintillation detectors capable of pulse shape discrimination (PSD) presents the opportunity to assess the pulse shape discrimination of these detectors prior to fabrication. The aim of this study is the simulation of the temporal pulse shapes from EJ-276, a PSD-capable plastic scintillator developed by Eljen Technologies. PSD plastic scintillators are increasingly replacing organic liquid scintillators for the detection of neutrons in the presence of mixed radiation fields for nuclear security applications. Plastics are inexpensive, robust and can be fabricated in a variety of shapes and sizes. They offer a solid-state alternative to liquid scintillators which can be difficult to transport due to the risk of leakage. However, the PSD performance of plastic scintillators has been observed to decrease due to various factors which combine to influence the overall shape of the pulse. The Monte Carlo toolkit Geant4 has been used to simulate the temporal pulse shapes from an EJ-276 plastic scintillator coupled to a photomultiplier tube (PMT). All three decay time components of EJ-276 have been modelled, utilising new methods available in the latest version of Geant4, for two different scintillator geometries. The simulated n/γ pulse shapes reproduce the features important for PSD. Future work will involve integrating the temporal response of the PMT with existing pulse shape simulations. Simulated data will then be compared with experimental measurements.


1994 ◽  
Vol 144 ◽  
pp. 635-639
Author(s):  
J. Baláž ◽  
A. V. Dmitriev ◽  
M. A. Kovalevskaya ◽  
K. Kudela ◽  
S. N. Kuznetsov ◽  
...  

AbstractThe experiment SONG (SOlar Neutron and Gamma rays) for the low altitude satellite CORONAS-I is described. The instrument is capable to provide gamma-ray line and continuum detection in the energy range 0.1 – 100 MeV as well as detection of neutrons with energies above 30 MeV. As a by-product, the electrons in the range 11 – 108 MeV will be measured too. The pulse shape discrimination technique (PSD) is used.


Sign in / Sign up

Export Citation Format

Share Document